Homeostatic plasticity mechanisms regulate behavior in vivo
稳态可塑性机制调节体内行为
基本信息
- 批准号:10385768
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Adaptive BehaviorsAddressAdultAirAlzheimer&aposs DiseaseAnimalsBehaviorBioinformaticsBiological ModelsBrainBrain StemBreathingCellsDataDiseaseElectromyographyElectrophysiology (science)EnsureEnvironmentEpilepsyExhibitsFailureFinancial compensationFunding OpportunitiesGene ExpressionGoalsIce CoverIndividualIntrinsic driveLeadLifeLightLinkLongevityLungMeasuresMemoryModelingModernizationMolecularMotorMotor NeuronsNatureNeurobiologyNeuronsNeurophysiology - biologic functionNeurosciencesOutputPerformancePhysiologicalPhysiologyPopulationPotassium ChannelPrevalenceProcessPumpRanaRegulationResearchShapesStimulusSynapsesSynaptic plasticitySystemTemperatureTestingTimeWalkingWaterWorkbasecold temperatureextracellulargene regulatory networkimprovedin vivoinnovationinsightmotor behaviornervous system disorderneuromuscular functionneuron componentpatch clampprogramsrelating to nervous systemrespiratoryresponsesantinsingle-cell RNA sequencingtraitventilation
项目摘要
Abstract
A remarkable trait of the healthy brain is that it can generate stable behaviors that last for decades. When this
fails to occur, a range of neurological disorders follow. An emerging view is that neurons can sense
disturbances in their activity and then make compensatory adjustments to stabilize their function, a process
referred to broadly as “homeostatic plasticity.” Insights into homeostatic plasticity have improved our
understanding of how neurons may remain stable in an ever-changing environment. Despite much progress,
how these mechanisms work in the intact brain to produce behaviors across the lifespan remains largely
unknown, and therefore, represents a major gap in basic neurobiology. We address this issue using an
innovative model where there exists a direct relationship between homeostatic compensation in neurons and
regulation of a tractable behavior during adult life: the respiratory motor system in frogs. For long periods each
year, motor circuits that control breathing in these animals are inactive because they hibernate in water and do
not breathe air. Our group recently discovered this environment leads to compensatory changes in
motoneurons that allow the circuit to work appropriately when animals must breathe again after months of
inactivity, thereby linking plasticity that stabilizes neuronal function to a vital and tractable behavior. Here, we
exploit this system to test three hypotheses that address the central question of how homeostatic mechanisms
arise in vivo to support adaptive behavior. Based on our preliminary data, we hypothesize that (1) this network
relies on multiple forms of intrinsic and synaptic motor plasticity to generate appropriate output, (2) intrinsic and
synaptic compensation follow unique time courses during inactivity due to distinct gene regulatory networks,
and (3) activity and environmental stimuli interact to differentially regulate intrinsic and synaptic compensation.
These hypotheses will be tested with an integrative approach that blends patch clamp electrophysiology to
measure plasticity at the cellular level, single-cell RNA sequencing and quantitative PCR to link gene
expression to physiology, electromyography to measure neuromuscular function in vivo, and extracellular
recording to assess function of intact circuits. Overall, this work will inform how neurons integrate multiple
types of plasticity to produce essential behaviors, a goal that must be achieved to understand how circuit
function remains healthy throughout life in many individuals but fails in others to cause disease.
摘要
健康大脑的一个显著特征是它可以产生持续数十年的稳定行为。当这个
如果没有发生,一系列神经系统疾病就会随之而来。一个新兴的观点是神经元可以感知
干扰他们的活动,然后进行补偿调整,以稳定他们的功能,这是一个过程,
广义上称为“稳态可塑性”对稳态可塑性的深入了解提高了我们的
了解神经元如何在不断变化的环境中保持稳定。尽管取得了很大进展,
这些机制如何在完整的大脑中发挥作用,从而在整个生命周期中产生行为,
未知,因此代表了基础神经生物学的一个重大空白。我们使用一个
创新模型,其中神经元中的稳态补偿与
在成年生活中对一种易于控制的行为的调节:青蛙的呼吸运动系统。在很长一段时间里,
一年来,这些动物控制呼吸的运动回路是不活跃的,因为它们在水中冬眠,
不要呼吸空气。我们的团队最近发现这种环境会导致
运动神经元,使电路正常工作时,动物必须呼吸后,几个月的
不活动,从而将稳定神经元功能的可塑性与重要和易处理的行为联系起来。这里我们
利用这个系统来测试三个假设,解决了自我平衡机制如何
支持适应性行为。根据我们的初步数据,我们假设(1)这个网络
依赖于多种形式的内在和突触运动可塑性,以产生适当的输出,(2)内在和
由于不同基因调节网络,
和(3)活动和环境刺激相互作用以差异调节内在和突触补偿。
这些假设将用一种综合方法进行检验,该方法将膜片钳电生理学与
在细胞水平上测量可塑性,单细胞RNA测序和定量PCR连接基因
表达生理学,肌电图测量体内神经肌肉功能,和细胞外
记录以评估完整电路的功能。总的来说,这项工作将告知神经元如何整合多个
类型的可塑性,以产生基本的行为,一个目标,必须达到了解如何电路
在许多个体中,功能在整个生命中保持健康,但在其他人中则无法引起疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph M Santin其他文献
High Fat Feeding in Rats Alters Respiratory Parameters by a Mechanism That Is Unlikely to Be Mediated by Carotid Body Type I Cells.
大鼠的高脂肪喂养通过一种不太可能由 I 型颈动脉体细胞介导的机制改变呼吸参数。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Ryan J. Rakoczy;Richard L. Pye;Tariq H Fayyad;Joseph M Santin;B. Barr;Christopher N Wyatt - 通讯作者:
Christopher N Wyatt
Joseph M Santin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph M Santin', 18)}}的其他基金
Homeostatic plasticity mechanisms regulate behavior in vivo
稳态可塑性机制调节体内行为
- 批准号:
10579955 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Homeostatic plasticity mechanisms regulate behavior in vivo
稳态可塑性机制调节体内行为
- 批准号:
10205296 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Homeostatic plasticity mechanisms regulate behavior in vivo
稳态可塑性机制调节体内行为
- 批准号:
10674083 - 财政年份:2021
- 资助金额:
-- - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant