Enabling Precision Genomics Using Adaptive Variation
使用自适应变异实现精密基因组学
基本信息
- 批准号:10383723
- 负责人:
- 金额:$ 43.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AgricultureAllelesBiological AssayCRISPR/Cas technologyCell LineCellsComplexComputer softwareComputing MethodologiesDNADNA SequenceDataDifferential MortalityDiploid CellsDiseaseEnvironmentEuropeEuropeanEvolutionFatty AcidsFertilityGenesGeneticGenetic EpistasisGenetic RecombinationGenetic VariationGenomeGenomicsGenotypeGraphHaploid CellsHeritabilityHumanHuman Cell LineHuman GenomeImmuneIndividualInfectionInfectious AgentLikelihood FunctionsLocationMapsMediatingMedicalMessenger RNAMethodsModelingMutationNatural SelectionsNucleotidesPathogenicityPhenotypePhysiologicalPopulationResearch PersonnelSiteSomatic CellSourceStatistical MethodsStatistical ModelsSystemTestingTimeVariantbasecausal variantcell typedietaryfatty acid metabolismfitnessgene environment interactiongenetic architecturegenetic variantgenome editinggenome wide association studyhuman DNAhuman pluripotent stem cellhuman stem cellsinterestnew technologypathogenpredictive modelingprotein metabolitetooltrait
项目摘要
Project Summary
Genes under natural selection may be related to heritable diseases, and variation in fitness more generally.
For example, genetic variants related to differential mortality rates during pathogenic infections will be under
natural selection when the infectious agents are present in the population. Inferences about selection at the
genomic level in humans, therefore, provide a rich source of new testable hypotheses about functional
relationships. However, while there are many methods for detecting natural selection at the genetic level, it
is often very hard to determine exactly which genetic variants were targeted by selection. The aim of our
study is to provide new computational methods for identifying causal mutations, and to apply these
methods, in order to better understand the map between genotype and phenotype of loci that are, or have
been, targeted by natural selection. We will apply the method to FADS genes, which harbor genetic
variation associated with fatty acid metabolism and which have been under selection in European
populations after the introduction of agriculture. We will test computational predictions experimentally in
human cell lines modified using CRISPR/Cas9 technology. This will lead to a deeper understanding of the
genetic differences among humans in these physiologically very important genes.
In Aim 1 we will develop new computational methods that can infer, from DNA sequence data, which
mutations have been targeted by natural selection. The methods will be able to incorporate the possibility
that more than one mutation has been under selection and will also be able to leverage various forms of
phenotypic and functional data.
In Aim 2, we will test computational predictions regarding selection in the FADS genes using CRISPR/Cas9
in human cell lines. In addition to identifying the functional mutations, we will test hypotheses about
interaction between mutations and between mutations and the environment, as represented by the
distribution of fatty acids available to the cells in the substrate they are growing on.
In Aim 3 we will extend the methods to be able to model selection in complex demographic models. We will
also extend the method to be able to include environmental co-variates and ancient DNA. This will allow us
to test hypotheses informed by the results of Aim 2 regarding the factors causing selection in the FADS
genes.
项目概要
自然选择下的基因可能与遗传性疾病以及更普遍的健康变异有关。
例如,与病原体感染期间不同死亡率相关的遗传变异将受到关注。
当传染源存在于人群中时,自然选择。关于选择的推论
因此,人类基因组水平提供了关于功能的新的可检验假设的丰富来源
关系。然而,虽然有很多方法可以在基因水平上检测自然选择,但
通常很难准确确定哪些遗传变异是选择的目标。我们的目标
研究的目的是提供新的计算方法来识别因果突变,并应用这些方法
方法,以便更好地理解基因座的基因型和表型之间的图谱,这些基因座是或已经
已经成为自然选择的目标。我们将该方法应用于 FADS 基因,该基因具有遗传性
与脂肪酸代谢相关的变异,并已在欧洲进行选择
农业引入后的人口。我们将通过实验测试计算预测
使用 CRISPR/Cas9 技术修饰的人类细胞系。这将导致对
人类之间的遗传差异在于这些生理上非常重要的基因。
在目标 1 中,我们将开发新的计算方法,可以从 DNA 序列数据推断出
突变已成为自然选择的目标。这些方法将能够纳入可能性
不止一种突变正在被选择,并且也将能够利用各种形式的
表型和功能数据。
在目标 2 中,我们将使用 CRISPR/Cas9 测试有关 FADS 基因选择的计算预测
在人类细胞系中。除了识别功能突变之外,我们还将测试有关的假设
突变之间以及突变与环境之间的相互作用,如
细胞可利用的脂肪酸在其生长的基质中的分布。
在目标 3 中,我们将扩展这些方法,以便能够在复杂的人口统计模型中对选择进行建模。我们将
还将该方法扩展到能够包括环境协变量和古代 DNA。这将使我们
测试由目标 2 结果得出的关于 FADS 中导致选择的因素的假设
基因。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RASMUS NIELSEN其他文献
RASMUS NIELSEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RASMUS NIELSEN', 18)}}的其他基金
Enabling Precision Genomics Using Adaptive Variation
使用自适应变异实现精密基因组学
- 批准号:
10218224 - 财政年份:2020
- 资助金额:
$ 43.51万 - 项目类别:
Enabling Precision Genomics Using Adaptive Variation
使用自适应变异实现精密基因组学
- 批准号:
10610371 - 财政年份:2020
- 资助金额:
$ 43.51万 - 项目类别:
Enabling Precision Genomics Using Adaptive Variation
使用自适应变异实现精密基因组学
- 批准号:
10032497 - 财政年份:2020
- 资助金额:
$ 43.51万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 43.51万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 43.51万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 43.51万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 43.51万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 43.51万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 43.51万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 43.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 43.51万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 43.51万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 43.51万 - 项目类别: