Using natural language processing and machine learning to identify potentially preventable hospital admissions among outpatients with chronic lung diseases
使用自然语言处理和机器学习来识别慢性肺病门诊患者可能可预防的住院情况
基本信息
- 批准号:10383738
- 负责人:
- 金额:$ 17.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-09 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcuteAddressAdherenceAdmission activityAdultAmbulatory CareAttentionAutomobile DrivingBioinformaticsCaregiversCaringCharacteristicsChronic Obstructive Pulmonary DiseaseChronic lung diseaseClassificationClinicalCommunitiesDataData SetData SourcesDiagnosisDiscriminationDiseaseEarly InterventionEarly identificationEducationElectronic Health RecordEnsureFutureGoalsHealth PolicyHealth systemHomeHospital CostsHospitalizationHospitalsInpatientsInterstitial Lung DiseasesInterventionInterviewK-Series Research Career ProgramsMachine LearningMaster of ScienceMeasuresMentorsMentorshipMethodologyMethodsModelingMonitorNational Heart, Lung, and Blood InstituteNatural Language ProcessingNatureNursesOutpatientsPalliative CarePatient CarePatient PreferencesPatientsPennsylvaniaPerformancePersonsPhenotypePhysiciansPolicy ResearchPopulationPositioning AttributePrimary Health CareResearchResearch MethodologyResearch PersonnelResourcesRiskRisk EstimateSocial supportStructureSupervisionSymptomsTechniquesTestingTextTimeTimeLineTrainingUnited StatesUniversitiesValidationWorkadministrative databasebasecareercareer developmentclinical centerclinical encountercomputer sciencecostdesigndiscrete dataend of lifeexperiencehospital readmissionimprovedinnovationinstrumentinterestmodel developmentmodifiable risknovelpredictive modelingpreferencepreventpreventive interventionpsychiatric comorbidityrandomized trialresponserisk prediction modelskillssocialstatistical learningstructured datasupportive environmenttrendtrial designunstructured data
项目摘要
Project Summary
Patients living with chronic lung diseases (CLDs) are frequently admitted to the hospital for potentially preventable
causes. Such admissions may be discordant with patient preferences and/or represent a low-value allocation of
health system resources. To anticipate such admissions, existing clinical prediction models in this field typically
produce an “all-cause” risk estimate which, even if accurate, overlooks the actionable mechanisms behind
admission risk and therefore fails to identify a prescribed response. This limitation may explain the only modest – at best
– reductions in hospital admissions and readmissions seen in most intervention bundles that have been tested
in this population. An opportunity exists, therefore, to predict hospitalization risk while simultaneously identifying
patient phenotypes (i.e. some constellation of social, demographic, clinical, and other characteristics) for which
known preventive interventions exist. The proposed study seeks to overcome these limitations and capitalize
on this opportunity by (1) conducting semi-structured interviews with hospitalized patients with CLDs, and their
caregivers and clinicians, to directly identify modifiable risks and their associated phenotypes driving hospital
admissions; (2) using natural language processing techniques (NLP) to build classification models that will leverage
nuanced narrative, social, and clinical information in the unstructured text of clinical encounter notes to identify
patients with these phenotypes; and (3) building risk prediction model focused on actionable phenotypes with
a wide-array of traditional regression and machine learning approaches while also incorporating large numbers
of predictor variables from text data and accounting for time-varying trends. The candidate's preliminary work
using basic NLP techniques to significantly improve the discrimination of clinical prediction models in an inpatient
population has motivated this methodologic approach. The rising burden and costs of hospitalizations associated
with CLDs, and the increasing attention from federal payers, highlights the critical nature of this work. Completion
of this research will build upon the candidate's past training, which includes a Masters of Science in Health Policy
Research obtained with NHLBI T32 support, and will provide the experience, education, and mentorship to allow
the candidate to become a fully independent investigator. Based on the candidate's tailored training plan, he will
acquire advanced skills in mixed-methods research, NLP, and trial design all through coursework, close
mentoring and supervision, and direct practice. The skills will position him ideally to submit successful R01s testing
the deployment of the proposed clinical prediction models in real-world settings. The candidate's primary mentor,
collaborators, and advisors will ensure adherence to the proposed timeline and goals and provide a
supportive environment for him to develop an independent research career testing the real-world deployment of clinical
prediction models to reduce low-value and preference-discordant care for patients with CLDs.
项目总结
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hierarchical Condition Categories for Pulmonary Diseases: Population Health Management and Policy Opportunities.
肺部疾病的分级病症类别:人口健康管理和政策机会。
- DOI:10.1016/j.chest.2018.12.013
- 发表时间:2019
- 期刊:
- 影响因子:9.6
- 作者:Weissman,GaryE
- 通讯作者:Weissman,GaryE
A vignette-based evaluation of ChatGPT's ability to provide appropriate and equitable medical advice across care contexts.
- DOI:10.1038/s41598-023-45223-y
- 发表时间:2023-10-19
- 期刊:
- 影响因子:4.6
- 作者:Nastasi, Anthony J.;Courtright, Katherine R.;Halpern, Scott D.;Weissman, Gary E.
- 通讯作者:Weissman, Gary E.
Word embeddings trained on published case reports are lightweight, effective for clinical tasks, and free of protected health information.
- DOI:10.1016/j.jbi.2021.103971
- 发表时间:2022-01
- 期刊:
- 影响因子:4.5
- 作者:Flamholz ZN;Crane-Droesch A;Ungar LH;Weissman GE
- 通讯作者:Weissman GE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gary Weissman其他文献
Gary Weissman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gary Weissman', 18)}}的其他基金
Using natural language processing and machine learning to identify potentially preventable hospital admissions among outpatients with chronic lung diseases
使用自然语言处理和机器学习来识别慢性肺病门诊患者可能可预防的住院情况
- 批准号:
9906933 - 财政年份:2018
- 资助金额:
$ 17.38万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 17.38万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 17.38万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 17.38万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 17.38万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 17.38万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 17.38万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 17.38万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 17.38万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 17.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 17.38万 - 项目类别:
Operating Grants