Systems Approaches to Understanding Subpopulation Heterogeneity in Therapeutic Resistance
理解治疗耐药性亚群异质性的系统方法
基本信息
- 批准号:10388446
- 负责人:
- 金额:$ 8.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-08 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBar CodesBehaviorBig DataBiological Specimen BanksBreast Cancer CellCancer BiologyCell CountCell LineCell SurvivalCellsChemoresistanceClinicalCommunitiesDataDevelopmental Therapeutics ProgramDiagnosisDimensionsDisease ProgressionDoxorubicinDrug resistanceExperimental ModelsFluorouracilFutureGene ExpressionGenomicsGoalsGrowthHeterogeneityHumanIndividualLinkMalignant NeoplasmsMapsMeasurementMeasuresMethodsModelingMolecularPaclitaxelPatientsPhenotypePlayPopulationPrediction of Response to TherapyRegimenResistanceRoleSamplingSystemSystems BiologyTechnologyTestingTexasTherapeuticTherapeutic AgentsTimeTreatment FailureTreatment ProtocolsUniversitiesVariantaustincancer therapycell dimensioncell growthchemotherapeutic agentchemotherapyclinically relevantcohesioncostepigenetic variationexperimental studyhigh dimensionalityindividualized medicinemathematical modelmedical schoolsmodel developmentmultidimensional dataneoplastic cellnew technologynovelpredictive modelingresponsesingle-cell RNA sequencingstandard of caretherapy resistanttranscriptometranscriptomicstreatment responsetriple-negative invasive breast carcinomatumortumor heterogeneity
项目摘要
PROJECT SUMMARY
In recent years, improvements in diagnosis and treatment have extended the lives of many patients with triple
negative breast cancer, but resistance to treatment remains a major clinical and scientific challenge. While
standard-of-care treatment and chemotherapy is effective in many TNBC patients, approximately 40% of
patients display resistance, leading to poor overall survival. TNBC are characterized by significant intratumor
heterogeneity, which further complicates treatment. Mechanisms of chemoresistance in TNBC patients
remain poorly understood, in part due to a lack of available methods and models to measure intratumor
heterogeneity and track changes in heterogeneous tumor compositions over time. Here we propose to use a
new technology to track individual cells and clones as they respond to different chemotherapeutic agents; this
more detailed information about the tumor cell population will be used to build mathematical models better
predict and optimize therapeutic response. We first measure individual cell gene expression changes in
response to treatment and then assemble these measurements into cell subpopulation trajectories, taking
advantage of a barcoding technology developed in our lab to quantify clonally-resolved single cell
transcriptomes. These Aim 1 studies will build a compendium of gene expression, cell growth and survival
data that describes how each of the heterogeneous cells in major experimental models of subtypes of triple
negative breast cancer responds to clinically-relevant therapeutic agents. The new ability to layer clonal
identifier information on single cell gene expression data reveals the detailed trajectories of individual cells
that escape therapy. It also distinguishes subpopulations with pre-existing treatment resistance from those
in which a resistant state is induced. At a higher conceptual level, this proposal seeks to also address a broad
practical challenge: the high-dimensional ‘omics’ data collected in many large-scale efforts points often points
to correlations in disease progression but not been informative for building mechanistic models to aid in the
predictive of tumor response. Often, other types of data are more readily available-- lower dimensional data
with more frequent measurements. We therefore next ask: How can these distinct data types be integrated
into a useful framework to build predictive models of tumor cell response to therapy? This seems a fitting goal
for the systems biology of cancer community. We propose to tackle this challenge with our barcode tracking
technology; relative fractions of sensitive and resistance phenotypes, along with separate longitudinal
measurements of cell number (low dimension data), become the inputs for a mechanistic model to predict
therapeutic response and resistance (Aim 2). In Aim 3, we will perform trajectory-mapping and model testing
using patient-derived triple negative breast cancer cells, towards understanding the potential for translational
utility. By integrating different data types into a cohesive framework, we aim to describe how sensitive and
resistant subpopulations in TNBC grow, die, and transition in response to treatment.
项目概要
近年来,诊断和治疗的进步延长了许多三联患者的生命
阴性乳腺癌,但对治疗的抵抗仍然是一个重大的临床和科学挑战。尽管
标准护理治疗和化疗对许多 TNBC 患者有效,大约 40%
患者表现出抵抗力,导致总体生存率较差。 TNBC 的特点是肿瘤内显着
异质性,使治疗进一步复杂化。 TNBC患者的化疗耐药机制
仍然知之甚少,部分原因是缺乏测量肿瘤内的可用方法和模型
异质性并跟踪异质肿瘤成分随时间的变化。这里我们建议使用一个
追踪单个细胞和克隆对不同化疗药物的反应的新技术;这
有关肿瘤细胞群的更详细信息将用于更好地建立数学模型
预测和优化治疗反应。我们首先测量单个细胞基因表达的变化
对治疗的反应,然后将这些测量结果组装成细胞亚群轨迹,
利用我们实验室开发的条形码技术来量化克隆解析的单细胞
转录组。这些目标 1 研究将构建基因表达、细胞生长和存活的概要
描述三重亚型的主要实验模型中的每个异质细胞如何的数据
阴性乳腺癌对临床相关治疗药物有反应。分层克隆的新能力
单细胞基因表达数据的标识符信息揭示了单个细胞的详细轨迹
那种逃避疗法。它还将预先存在治疗耐药性的亚群与那些亚群区分开来。
其中诱导抵抗状态。在更高的概念层面上,该提案还旨在解决广泛的问题
实际挑战:在许多大规模工作中收集的高维“组学”数据往往是点
与疾病进展的相关性,但对于建立机械模型来帮助
预测肿瘤反应。通常,其他类型的数据更容易获得——低维数据
更频繁的测量。因此,我们接下来要问:如何集成这些不同的数据类型
进入一个有用的框架来建立肿瘤细胞对治疗反应的预测模型?这似乎是一个合适的目标
用于癌症界的系统生物学。我们建议通过条形码跟踪来应对这一挑战
技术;敏感和抗性表型的相对分数,以及单独的纵向
细胞数量的测量(低维数据),成为机械模型预测的输入
治疗反应和耐药性(目标 2)。在目标 3 中,我们将进行轨迹映射和模型测试
使用患者来源的三阴性乳腺癌细胞,了解转化的潜力
公用事业。通过将不同的数据类型集成到一个有凝聚力的框架中,我们的目标是描述敏感度和
TNBC 中的耐药亚群会因治疗而生长、死亡和转变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy Brock其他文献
Amy Brock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy Brock', 18)}}的其他基金
Instability of Cancer Cell States in Tumor progression (ICCS)
肿瘤进展过程中癌细胞状态的不稳定性 (ICCS)
- 批准号:
10491691 - 财政年份:2021
- 资助金额:
$ 8.1万 - 项目类别:
A streamlined, high-throughput platform for validation of cancer antigen presentation and isolation of cancer antigen reactive T cells
一个简化的高通量平台,用于验证癌症抗原呈递和分离癌症抗原反应性 T 细胞
- 批准号:
10493222 - 财政年份:2021
- 资助金额:
$ 8.1万 - 项目类别:
A streamlined, high-throughput platform for validation of cancer antigen presentation and isolation of cancer antigen reactive T cells
一个简化的高通量平台,用于验证癌症抗原呈递和分离癌症抗原反应性 T 细胞
- 批准号:
10272349 - 财政年份:2021
- 资助金额:
$ 8.1万 - 项目类别:
Instability of Cancer Cell States in Tumor progression (ICCS)
肿瘤进展过程中癌细胞状态的不稳定性 (ICCS)
- 批准号:
10212099 - 财政年份:2021
- 资助金额:
$ 8.1万 - 项目类别:
Systems Approaches to Understanding Subpopulation Heterogeneity in Therapeutic Resistance
理解治疗耐药性亚群异质性的系统方法
- 批准号:
10057183 - 财政年份:2020
- 资助金额:
$ 8.1万 - 项目类别:
Systems Approaches to Understanding Subpopulation Heterogeneity in Therapeutic Resistance
理解治疗耐药性亚群异质性的系统方法
- 批准号:
10256717 - 财政年份:2020
- 资助金额:
$ 8.1万 - 项目类别:
Systems Approaches to Understanding Subpopulation Heterogeneity in Therapeutic Resistance
理解治疗耐药性亚群异质性的系统方法
- 批准号:
10468211 - 财政年份:2020
- 资助金额:
$ 8.1万 - 项目类别:
Systems Approaches to Understanding Subpopulation Heterogeneity in Therapeutic Resistance
理解治疗耐药性亚群异质性的系统方法
- 批准号:
10524210 - 财政年份:2020
- 资助金额:
$ 8.1万 - 项目类别:
Systems Approaches to Understanding Subpopulation Heterogeneity in Therapeutic Resistance
理解治疗耐药性亚群异质性的系统方法
- 批准号:
10307901 - 财政年份:2020
- 资助金额:
$ 8.1万 - 项目类别:
Systems Approaches to Understanding Subpopulation Heterogeneity in Therapeutic Resistance
理解治疗耐药性亚群异质性的系统方法
- 批准号:
10759093 - 财政年份:2020
- 资助金额:
$ 8.1万 - 项目类别:














{{item.name}}会员




