Compute-Cluster for Deep-Learning Models for Mass Spectrometry based Proteomics data

基于质谱的蛋白质组数据深度学习模型的计算集群

基本信息

  • 批准号:
    10389445
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Project Abstract/Summary Mass spectrometry (MS) data is high-dimensional data that is used for large-scale system biology proteomics. The current state of the art mass spectrometers can generate thousands of spectra from a single organism and experiment. This high-dimensional data is processed using database searches and denovo algorithms with varying degrees of success. The overarching objective of this study is to develop, test, integrate and evaluate novel image-processing and deep-learning algorithms that will allow us to deduce and identify reliable peptide sequences in a definitive and quantitative fashion. Our long-term goal is to improve on identification of MS based proteomics data using novel and scalable algorithms. The objective of this proposal is to investigate, design and implement machine-learning deep-learning algorithms for identification of peptides from MS data. Since deep-learning is very good at discovering intricate structures in high-dimensional data it will be ideal solution for discovering dark proteomics data and more accurate deduction of peptides. We predict that the integration of these methods, along with traditional numerical algorithms, will lead to a multimodal fusion-based approach for an optimized and accurate peptide deduction system for large-scale MS data. Further, we will design and implement data augmentation, memory-efficient indexing, and high-performance computing (HPC) to achieve these outcomes more efficiently with a shorter computational time. Therefore, this new line of investigation is significant since it has the potential to improve on long-stalled effort to increase accuracy, reliability and reproducibility of MS data analysis and search tools. The proximate expected outcome of this work is a novel set of deep-learning and image-processing tools which will allow much better insight in MS based proteomics data. The results will have an important positive impact immediately because these proposed research tasks will lay the groundwork to develop a new class of algorithms and will provide rapid, high-throughput, sensitive, and reproducible and reliable tools for MS based proteomics.
项目摘要/总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fahad Saeed其他文献

Fahad Saeed的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fahad Saeed', 18)}}的其他基金

Pilot Testing of a Communication Intervention to Promote Shared Dialysis Decision Making in Older Patients with Chronic Kidney Disease (DIAL-SDM Trial)
对促进老年慢性肾病患者共同透析决策的沟通干预进行试点测试(DIAL-SDM 试验)
  • 批准号:
    10159888
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
Pilot Testing of a Communication Intervention to Promote Shared Dialysis Decision Making in Older Patients with Chronic Kidney Disease (DIAL-SDM Trial)
对促进老年慢性肾病患者共同透析决策的沟通干预进行试点测试(DIAL-SDM 试验)
  • 批准号:
    9976804
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
Multimodal Machine-Learning and High Performance Computing Strategies for Big MS Proteomics Data
MS 蛋白质组大数据的多模态机器学习和高性能计算策略
  • 批准号:
    10372290
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
Pilot Testing of a Communication Intervention to Promote Shared Dialysis Decision Making in Older Patients with Chronic Kidney Disease (DIAL-SDM Trial)
对促进老年慢性肾病患者共同透析决策的沟通干预进行试点测试(DIAL-SDM 试验)
  • 批准号:
    10379466
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
Multimodal Machine-Learning and High Performance Computing Strategies for Big MS Proteomics Data
MS 蛋白质组大数据的多模态机器学习和高性能计算策略
  • 批准号:
    10163880
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
Multimodal Machine-Learning and High Performance Computing Strategies for Big MS Proteomics Data
MS 蛋白质组大数据的多模态机器学习和高性能计算策略
  • 批准号:
    10413045
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
Pilot Testing of a Communication Intervention to Promote Shared Dialysis Decision Making in Older Patients with Chronic Kidney Disease (DIAL-SDM Trial)
对促进老年慢性肾病患者共同透析决策的沟通干预进行试点测试(DIAL-SDM 试验)
  • 批准号:
    10887101
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
Pilot Testing of a Communication Intervention to Promote Shared Dialysis Decision Making in Older Patients with Chronic Kidney Disease (DIAL-SDM Trial)
对促进老年慢性肾病患者共同透析决策的沟通干预进行试点测试(DIAL-SDM 试验)
  • 批准号:
    10609444
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
Multimodal Machine-Learning and High Performance Computing Strategies for Big MS Proteomics Data
MS 蛋白质组大数据的多模态机器学习和高性能计算策略
  • 批准号:
    9973317
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了