Design and Development of Ligand-Responsive CRISPR-Cas Enzymes
配体响应性 CRISPR-Cas 酶的设计和开发
基本信息
- 批准号:10388925
- 负责人:
- 金额:$ 0.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2021-11-30
- 项目状态:已结题
- 来源:
- 关键词:4-Hydroxy-TamoxifenAllosteric RegulationAnalytical ChemistryAttenuatedBCAR1 geneBacteriophagesBar CodesBasic ScienceBindingBiologicalBiological ProcessCellsChemicalsCleaved cellClustered Regularly Interspaced Short Palindromic RepeatsComplementCuesCyclic GMPDNADNA sequencingDeoxyribonucleasesDetectionDevelopmentDiagnosticDiseaseDoseEngineeringEnsureEnvironmentEnzymesEventExperimental DesignsFeedbackFellowshipGasesGene ExpressionGenerationsGenetic TranscriptionGenomeGenomic DNAGenomicsGuide RNAHarvestHumanImageIn SituInfectionInvestigationLibrariesLife Cycle StagesLigand BindingLigand Binding DomainLigandsLightLocationLongitudinal StudiesMapsMeasurementMedicalMessenger RNAMetabolicModificationMolecularNatureNucleic Acid BindingNucleic AcidsOrthologous GeneOutputParvovirusPathogenesisPathogenicityPeptidesPhysiologicalPopulationProcessProductionPropertyProteinsRNARNA PhagesRecording of previous eventsRegulationReporterReportingRepressionResearchResearch PersonnelResolutionRoleScienceSignal TransductionSingle-Stranded DNASirolimusSiteSoluble Guanylate CyclaseSourceSpecificityStructureTechnical ExpertiseTechnologyTestingTherapeuticTrainingTranscription RepressorTransplantationValidationVariantWorkanalogbasecell typedeep sequencingdesignempoweredenzyme activityepigenome editinggenome editingimprovedin vivoinnovationknock-downmembermetabolic abnormality assessmentmetabolic profilemicrobialnext generationnovelnucleasepreventprogramspromoterprotein expressionresponsescreeningsensorsingle cell sequencingsmall hairpin RNAsmall moleculespatiotemporalsuccesssynthetic biologytemporal measurementtherapeutic genome editingtooltranscriptome
项目摘要
PROJECT SUMMARY
The discovery and repurposing of CRISPR-Cas enzymes for genome and transcriptome manipulation has
profoundly impacted the pace, breadth, and depth of experimental design and investigation in the biological and
medical sciences. The search for distinct types of CRISPR-Cas enzymes continues to uncover novel chemical
mechanisms and biological roles that make these proteins well suited for new types of investigative and
therapeutic applications. For example, several Cas9 orthologs were recently shown to bind and cleave RNA in
an RNA-guided, protospacer adjacent motif (PAM)-independent manner, enabling in vivo repression of protein
expression through targeted mRNA binding and even inhibiting RNA bacteriophage infection. Several Cas12a
orthologs were recently found to act as non-specific single-stranded DNA (ssDNA) nucleases once activated by
RNA-guided binding of target DNA, a property that could be used to interfere with life cycles of human pathogenic
ssDNA parvoviruses or microbial ssDNA bacteriophage. Thus, these CRISPR-Cas enzymes continue to promise
exciting, innovative RNA- and ssDNA-targeting applications beyond their established impactful implementation
as genome editors. Before deploying these enzymes as medical tools, however, it is prudent to design and test
mechanisms through which their nucleic acid-modifying and -binding activities can be rapidly activated or
inactivated to prevent undesired editing. The objective of the proposed research is to develop allosterically
regulated CRISPR-Cas enzymes to enable precise spatiotemporal control over next-generation genome and
transcriptome modification. In the first aim, allosterically sensitive sites will be systematically mapped within a
set of medically useful Cas12a and RNA-targeting Cas9 orthologs, yielding a panel of new CRISPR-Cas
enzymes that are controlled by local administration of 4-hydroxytamoxifen (4-HT) or rapamycin. In the second
aim, we will expand the chemical diversity of ligands and metabolites capable of exerting control over CRISPR-
Cas enzyme activity by transplanting ligand-binding regulatory domains harvested from natural sensor proteins
into allosterically sensitive sites in Cas9 and Cas12a orthologs. In the third aim, allosteric CRISPR-Cas molecular
recorders will be deployed to quantify metabolic dysregulation across a heterogenous cell population, genetically
encoding single cell metabolic profiles that are retrievable by deep sequencing. Success of these aims will set
the stage for development of CRISPR-Cas enzymes that automatically sense and respond to dynamic profiles
of defined chemical cue combinations, facilitating safe deployment of smart nucleic acid editors for therapeutic
applications and for longitudinal reporting of intracellular ligand states using traditional reporters or through
genome-encoded recording. UC Berkeley offers a collaborative, collegial, interdisciplinary, and scientifically
rigorous environment that is conducive to highly effective postdoctoral scientific and professional training, and
its established, world-class investigators possess the technical expertise to complement that provided in the
Doudna lab and to ensure the success of the proposed fellowship training plan.
项目总结
用于基因组和转录组操作的CRISPR-Cas酶的发现和再利用
深刻地影响了实验设计和研究的速度、广度和深度
医学。对不同类型CRISPR-CAS酶的研究继续发现新的化学物质
使这些蛋白质非常适合于新型研究和研究的机制和生物学作用
治疗应用。例如,最近有几个Cas9同源基因被证明可以结合和切割
一种RNA引导的、非依赖于蛋白质的邻接基序(PAM)的方式,使蛋白质能够在体内被抑制
通过靶向的mRNA结合表达,甚至抑制RNA噬菌体感染。几个机箱12a
最近发现,同源基因一旦被激活,就会作为非特异性单链DNA(SsDNA)核酸酶
RNA引导的靶DNA结合,这一特性可用于干扰人类致病病毒的生命周期
单链DNA细小病毒或微生物单链DNA噬菌体。因此,这些CRISPR-CAS酶继续有希望
令人兴奋的、创新的RNA和单链DNA靶向应用,超越了其现有的有效实施
作为基因组编辑。然而,在将这些酶用作医疗工具之前,谨慎的做法是设计和测试
它们的核酸修饰和结合活性可以被快速激活或
停用以防止不需要的编辑。拟议研究的目标是发展变构
受调控的CRISPR-CAS酶能够精确地时空控制下一代基因组和
转录组修饰。在第一个目标中,变构敏感部位将在一个
一组医学上有用的Cas12a和RNA靶向Cas9同源基因,产生了一组新的CRISPR-CA
由局部给药4-羟基三苯氧胺(4-HT)或雷帕霉素控制的酶。在第二个
目的,我们将扩大能够控制CRISPR的配体和代谢产物的化学多样性。
移植天然传感器蛋白配体结合调节结构域的CAS酶活性
进入Cas9和Cas12a同源基因的变构敏感部位。第三个目标是变构CRISPR-Cas分子
将部署记录器,以量化遗传上的异种细胞群体的代谢失调
编码可通过深度测序检索的单细胞代谢特征。这些目标的成功将设定
CRISPR-Cas酶自动感知和响应动态图谱的发展阶段
定义的化学线索组合,便于安全地部署用于治疗的智能核酸编辑器
应用程序以及使用传统报告器或通过
基因组编码记录。加州大学伯克利分校提供协作性、合议性、跨学科和科学的
严格的环境,有利于高效的博士后科学和专业培训;
其成熟的、世界级的调查人员拥有技术专长,以补充
杜德纳实验室,并确保拟议的研究金培训计划取得成功。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brady Fletcher Cress其他文献
Brady Fletcher Cress的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brady Fletcher Cress', 18)}}的其他基金
Design and Development of Ligand-ResponsiveCRISPR-Cas Enzymes
配体响应性CRISPR-Cas酶的设计和开发
- 批准号:
10023929 - 财政年份:2019
- 资助金额:
$ 0.25万 - 项目类别:
相似海外基金
Molecular insights into the allosteric regulation of opioid receptors
阿片受体变构调节的分子见解
- 批准号:
DE240100931 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Discovery Early Career Researcher Award
Allosteric regulation of lysine degradation as a novel pathophysiological mechanism in glutaric aciduria type 1
赖氨酸降解的变构调节作为 1 型戊二酸尿症的一种新的病理生理机制
- 批准号:
10720740 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Elucidating the Mechanism for Allosteric Regulation of SIRT1 through the N-terminal Region
阐明 SIRT1 通过 N 末端区域变构调节的机制
- 批准号:
10627735 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Allosteric Regulation of Actin Capping Protein: Mechanism and Significance
肌动蛋白加帽蛋白的变构调节:机制和意义
- 批准号:
10330809 - 财政年份:2022
- 资助金额:
$ 0.25万 - 项目类别:
Allosteric Regulation of Actin Capping Protein: Mechanism and Significance
肌动蛋白加帽蛋白的变构调节:机制和意义
- 批准号:
10797746 - 财政年份:2022
- 资助金额:
$ 0.25万 - 项目类别:
Structural and functional studies of allosteric regulation of metabolic enzymes
代谢酶变构调节的结构和功能研究
- 批准号:
RGPIN-2020-04281 - 财政年份:2022
- 资助金额:
$ 0.25万 - 项目类别:
Discovery Grants Program - Individual
Allosteric Regulation of Actin Capping Protein: Mechanism and Significance
肌动蛋白加帽蛋白的变构调节:机制和意义
- 批准号:
10552651 - 财政年份:2022
- 资助金额:
$ 0.25万 - 项目类别:
Allosteric regulation of human cystathionine beta-synthase
人胱硫醚β-合酶的变构调节
- 批准号:
10602404 - 财政年份:2022
- 资助金额:
$ 0.25万 - 项目类别:
Allosteric regulation of human cystathionine beta-synthase
人胱硫醚β-合酶的变构调节
- 批准号:
10381000 - 财政年份:2022
- 资助金额:
$ 0.25万 - 项目类别:
Structural basis for allosteric regulation of RyR1
RyR1 变构调节的结构基础
- 批准号:
10366087 - 财政年份:2021
- 资助金额:
$ 0.25万 - 项目类别: