ALLOSTERIC IMPACT OF NON-ACTIVE-SITE MUTATIONS ON ENZYMATIC FUNCTION

非活性位点突变对酶功能的变构影响

基本信息

  • 批准号:
    10387558
  • 负责人:
  • 金额:
    $ 10.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-05 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Antibiotic-resistant infections kill tens of thousands of Americans and cost our nation billions of dollars every year. β-lactamase enzymes are one of the most common sources of resistance and are capable of quickly evolving the ability to degrade new β-lactam antibiotics as they are introduced. Surprisingly, many of the mutations that confer β-lactamases with new functions are far from the enzyme's active site and have little effect on the structure of the active site, as observed by x-ray crystallography. Such non-active site (NAS) mutations also appear frequently in other contexts, such as the evolution of other forms of drug resistance and directed evolution studies. Understanding how NAS mutations allosterically impact distant sites would provide a basis for predicting new forms of drug resistance and designing allosteric drugs to combat diseases like antibiotic-resistant infections. The objective of this proposal is to understand how NAS mutations confer β- lactamases with activity against new substrates. A predictive understanding of NAS mutations remains elusive because of the ruggedness of proteins' energy landscapes and the great diversity of mechanisms that couple distant residues, including both concerted structural changes and correlations between the dynamics of different residues. These obstacles will be overcome by integrating novel computational methods with in vitro and in vivo experiments to converge on a quantitative understanding of the full spectrum of correlated fluctuations responsible for allosteric coupling. For example, the research team will apply new methods they developed to facilitate comprehensive sampling of proteins' energy landscapes, such as their FAST algorithm for leveraging Markov State Models (MSMs) to efficiently sample conformations with pre-specified features. In Aim 1, these methods will be used to identify what features of β-lactamase's structure and dynamics give rise to new activities by comparing models for variants with different activities against the antibiotic cefotaxime. In aim 2, new methods for identifying both concerted structural changes and correlations between the dynamics of different residues will be developed. These methods will be used to predict new sites where NAS mutations can alter activities of β-lactamases. To test insights from each aim, mutations will be designed to confer β- lactamases with new activities. Then experiments will be performed to test 1) whether these mutations have the intended impact on the activities of β-lactamases and 2) whether the designed variants are capable of protecting bacteria from the target antibiotic. Completion of this work will result in a general framework for understanding allosteric communication that will serve as a basis for future efforts to predict drug resistance, design new antibiotics that allosterically inhibit their targets, and manipulate allostery in other systems.
抗生素耐药性感染导致成千上万的美国人死亡,每年给我们国家造成数十亿美元的损失

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory R Bowman其他文献

Gregory R Bowman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory R Bowman', 18)}}的其他基金

Biochemistry and Structural Modeling Core
生物化学和结构建模核心
  • 批准号:
    10407937
  • 财政年份:
    2021
  • 资助金额:
    $ 10.98万
  • 项目类别:
Structural basis for ApoE4-induced Alzheimer's disease
ApoE4 诱导的阿尔茨海默病的结构基础
  • 批准号:
    10744482
  • 财政年份:
    2021
  • 资助金额:
    $ 10.98万
  • 项目类别:
Biochemistry and Structural Modeling Core
生物化学和结构建模核心
  • 批准号:
    10667438
  • 财政年份:
    2021
  • 资助金额:
    $ 10.98万
  • 项目类别:
MSMs, adaptive sampling, and data sharing on the cloud
MSM、自适应采样和云端数据共享
  • 批准号:
    10166370
  • 财政年份:
    2017
  • 资助金额:
    $ 10.98万
  • 项目类别:
ALLOSTERIC IMPACT OF NON-ACTIVE-SITE MUTATIONS ON ENZYMATIC FUNCTION
非活性位点突变对酶功能的变构影响
  • 批准号:
    9361418
  • 财政年份:
    2017
  • 资助金额:
    $ 10.98万
  • 项目类别:
ALLOSTERIC IMPACT OF NON-ACTIVE-SITE MUTATIONS ON ENZYMATIC FUNCTION
非活性位点突变对酶功能的变构影响
  • 批准号:
    9977221
  • 财政年份:
    2017
  • 资助金额:
    $ 10.98万
  • 项目类别:
ALLOSTERIC IMPACT OF NON-ACTIVE-SITE MUTATIONS ON ENZYMATIC FUNCTION
非活性位点突变对酶功能的变构影响
  • 批准号:
    10214633
  • 财政年份:
    2017
  • 资助金额:
    $ 10.98万
  • 项目类别:
Allosteric impact of non-active-site mutations on enzymatic function
非活性位点突变对酶功能的变构影响
  • 批准号:
    10692526
  • 财政年份:
    2017
  • 资助金额:
    $ 10.98万
  • 项目类别:
ALLOSTERIC IMPACT OF NON-ACTIVE-SITE MUTATIONS ON ENZYMATIC FUNCTION
非活性位点突变对酶功能的变构影响
  • 批准号:
    9557495
  • 财政年份:
    2017
  • 资助金额:
    $ 10.98万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.98万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 10.98万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 10.98万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 10.98万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 10.98万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 10.98万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 10.98万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 10.98万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 10.98万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 10.98万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了