ALLOSTERIC IMPACT OF NON-ACTIVE-SITE MUTATIONS ON ENZYMATIC FUNCTION

非活性位点突变对酶功能的变构影响

基本信息

  • 批准号:
    10214633
  • 负责人:
  • 金额:
    $ 23.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-05 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Antibiotic-resistant infections kill tens of thousands of Americans and cost our nation billions of dollars every year. β-lactamase enzymes are one of the most common sources of resistance and are capable of quickly evolving the ability to degrade new β-lactam antibiotics as they are introduced. Surprisingly, many of the mutations that confer β-lactamases with new functions are far from the enzyme's active site and have little effect on the structure of the active site, as observed by x-ray crystallography. Such non-active site (NAS) mutations also appear frequently in other contexts, such as the evolution of other forms of drug resistance and directed evolution studies. Understanding how NAS mutations allosterically impact distant sites would provide a basis for predicting new forms of drug resistance and designing allosteric drugs to combat diseases like antibiotic-resistant infections. The objective of this proposal is to understand how NAS mutations confer β- lactamases with activity against new substrates. A predictive understanding of NAS mutations remains elusive because of the ruggedness of proteins' energy landscapes and the great diversity of mechanisms that couple distant residues, including both concerted structural changes and correlations between the dynamics of different residues. These obstacles will be overcome by integrating novel computational methods with in vitro and in vivo experiments to converge on a quantitative understanding of the full spectrum of correlated fluctuations responsible for allosteric coupling. For example, the research team will apply new methods they developed to facilitate comprehensive sampling of proteins' energy landscapes, such as their FAST algorithm for leveraging Markov State Models (MSMs) to efficiently sample conformations with pre-specified features. In Aim 1, these methods will be used to identify what features of β-lactamase's structure and dynamics give rise to new activities by comparing models for variants with different activities against the antibiotic cefotaxime. In aim 2, new methods for identifying both concerted structural changes and correlations between the dynamics of different residues will be developed. These methods will be used to predict new sites where NAS mutations can alter activities of β-lactamases. To test insights from each aim, mutations will be designed to confer β- lactamases with new activities. Then experiments will be performed to test 1) whether these mutations have the intended impact on the activities of β-lactamases and 2) whether the designed variants are capable of protecting bacteria from the target antibiotic. Completion of this work will result in a general framework for understanding allosteric communication that will serve as a basis for future efforts to predict drug resistance, design new antibiotics that allosterically inhibit their targets, and manipulate allostery in other systems.
抗生素耐药性感染导致数以万计的美国人死亡,每年给我们国家造成数十亿美元的损失 年。 β-内酰胺酶是最常见的耐药源之一,能够快速消除耐药性。 随着新的β-内酰胺抗生素的引入,不断进化出降解它们的能力。令人惊讶的是,许多 赋予β-内酰胺酶新功能的突变远离酶的活性位点,并且几乎没有什么作用。 通过 X 射线晶体学观察到对活性位点结构的影响。此类非活动站点(NAS) 突变也经常出现在其他情况下,例如其他形式的耐药性的进化和 定向进化研究。了解 NAS 突变如何变构影响远处位点将提供 预测新形式的耐药性和设计变构药物来对抗疾病的基础 抗生素耐药性感染。该提案的目的是了解 NAS 突变如何赋予 β- 对新底物具有活性的内酰胺酶。对 NAS 突变的预测性理解仍然难以捉摸 由于蛋白质能量景观的崎岖性以及耦合机制的多样性 遥远的残基,包括协调的结构变化和动力学之间的相关性 不同的残留物。这些障碍将通过将新颖的计算方法与体外相结合来克服 和体内实验,以集中对所有相关的定量理解 引起变构耦合的波动。例如,研究团队将应用他们的新方法 开发用于促进蛋白质能量景观的全面采样,例如 FAST 算法 利用马尔可夫状态模型 (MSM) 有效地对具有预先指定特征的构象进行采样。在 目标 1,这些方法将用于确定 β-内酰胺酶结构和动力学的哪些特征引起 通过比较针对抗生素头孢噻肟具有不同活性的变体模型,了解新的活性。在 目标 2,识别协同结构变化和动态之间相关性的新方法 将开发不同的残留物。这些方法将用于预测 NAS 突变的新位点 可以改变β-内酰胺酶的活性。为了测试每个目标的见解,突变将被设计为赋予 β- 具有新活性的内酰胺酶。然后将进行实验来测试 1)这些突变是否具有 对 β-内酰胺酶活性的预期影响以及 2) 设计的变体是否能够 保护细菌免受目标抗生素的侵害。这项工作的完成将形成一个总体框架 了解变构通讯,这将作为未来预测耐药性的基础, 设计新的抗生素,以变构方式抑制其靶标,并操纵其他系统中的变构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory R Bowman其他文献

Gregory R Bowman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory R Bowman', 18)}}的其他基金

Biochemistry and Structural Modeling Core
生物化学和结构建模核心
  • 批准号:
    10407937
  • 财政年份:
    2021
  • 资助金额:
    $ 23.11万
  • 项目类别:
Structural basis for ApoE4-induced Alzheimer's disease
ApoE4 诱导的阿尔茨海默病的结构基础
  • 批准号:
    10744482
  • 财政年份:
    2021
  • 资助金额:
    $ 23.11万
  • 项目类别:
Biochemistry and Structural Modeling Core
生物化学和结构建模核心
  • 批准号:
    10667438
  • 财政年份:
    2021
  • 资助金额:
    $ 23.11万
  • 项目类别:
MSMs, adaptive sampling, and data sharing on the cloud
MSM、自适应采样和云端数据共享
  • 批准号:
    10166370
  • 财政年份:
    2017
  • 资助金额:
    $ 23.11万
  • 项目类别:
ALLOSTERIC IMPACT OF NON-ACTIVE-SITE MUTATIONS ON ENZYMATIC FUNCTION
非活性位点突变对酶功能的变构影响
  • 批准号:
    10387558
  • 财政年份:
    2017
  • 资助金额:
    $ 23.11万
  • 项目类别:
ALLOSTERIC IMPACT OF NON-ACTIVE-SITE MUTATIONS ON ENZYMATIC FUNCTION
非活性位点突变对酶功能的变构影响
  • 批准号:
    9361418
  • 财政年份:
    2017
  • 资助金额:
    $ 23.11万
  • 项目类别:
ALLOSTERIC IMPACT OF NON-ACTIVE-SITE MUTATIONS ON ENZYMATIC FUNCTION
非活性位点突变对酶功能的变构影响
  • 批准号:
    9977221
  • 财政年份:
    2017
  • 资助金额:
    $ 23.11万
  • 项目类别:
Allosteric impact of non-active-site mutations on enzymatic function
非活性位点突变对酶功能的变构影响
  • 批准号:
    10692526
  • 财政年份:
    2017
  • 资助金额:
    $ 23.11万
  • 项目类别:
ALLOSTERIC IMPACT OF NON-ACTIVE-SITE MUTATIONS ON ENZYMATIC FUNCTION
非活性位点突变对酶功能的变构影响
  • 批准号:
    9557495
  • 财政年份:
    2017
  • 资助金额:
    $ 23.11万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 23.11万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 23.11万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 23.11万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 23.11万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 23.11万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 23.11万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 23.11万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 23.11万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 23.11万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.11万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了