Multilevel Determinants of Racial and Ethnic Disparities in Maternal Morbidity and Mortality in the Context of COVID-19 Pandemic
COVID-19 大流行背景下孕产妇发病率和死亡率的种族和民族差异的多层次决定因素
基本信息
- 批准号:10392607
- 负责人:
- 金额:$ 88.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-07 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAreaBirthBirth CertificatesCOVID-19COVID-19 pandemicCOVID-19 severityCOVID-19 testingCardiovascular DiseasesCaringChild WelfareClinicalColorCommunitiesCommunity HealthcareComplexCountyDataData AnalysesData SourcesDatabasesDeath RateDiabetes MellitusDiscriminationEducationElectronic Health RecordEnsureEnvironmentEthnic OriginEtiologyFamilyFinancial HardshipGeographyGoalsHealthHispanicsHomeHourHypertensionIncomeIndividualInfant MortalityInstitutionInterventionInterviewKnowledgeLabor ComplicationsLeadLinkMachine LearningMaternal HealthMaternal Health ServicesMaternal MortalityMaternal and Child HealthMediatingMedically Underserved AreaMental HealthMethodsModelingMorbidity - disease rateMothersNot Hispanic or LatinoOutcomeOwnershipPathway interactionsPlayPoliciesPopulation HeterogeneityPositioning AttributePostpartum PeriodPostpartum WomenPovertyPregnancyPregnancy ComplicationsPregnant WomenPsychosocial StressPulmonary EmbolismResearchResearch DesignRiskRoleSARS-CoV-2 infectionSocial DistanceSocial EnvironmentSocietiesSouth CarolinaStructural RacismSurveysSystemTimeUnemploymentWomananalytical toolbaseblack womencare providerscohortcontextual factorscoronavirus diseasedelivery complicationsdesignexperiencehealth care qualityhealth disparityhigh riskimprovedinfection rateinnovationlearning algorithmmachine learning algorithmmaternal morbiditymortalitymortality riskpandemic diseasepopulation basedpregnantprotective factorsracial and ethnic disparitiesracial discriminationracial disparityracial diversityresidential segregationresponsesevere maternal morbiditysocioeconomicsstemtrendunhealthy lifestyle
项目摘要
Abstract
Annually in the U.S., nearly 60,000 women experience severe maternal morbidity and mortality (SMMM) with
substantial health disparities by race/ethnicity, even prior to the COVID-19 pandemic. The unprecedented
COVID-19 pandemic has hit communities of color the hardest. Non-Hispanic Black and Hispanic women who
are pregnant appear to have disproportionate SARS-CoV-2 infection and death rates. Questions regarding the
impact of the COVID-19 pandemic on racial disparities in SMMM and the dynamics and interactions of
multilevel determinants such as broader social contexts of SMMM remain unanswered. The overarching goal
of this study is to investigate racial/ethnic disparities in maternal morbidity and mortality (MMM), the
contributing roles and mediating pathways of social contexts (e.g., residential segregation, racial
discrimination in poverty, education, unemployment, and home ownership), and their long-standing health
consequences postpartum. We will achieve our goal by studying the distributions of COVID-19 cases and
multilevel determinants of maternal health in South Carolina (SC), a state with persistent racial disparities in
SMMM within historical systemic Southern contexts, and in the U.S. We will build upon our existing statewide
SC COVID-19 Cohort (S3C) by creating a pregnancy cohort that will link COVID-19 testing data, electronic
health records (EHR), and birth certificate data for all births in SC in 2019-2020. To ensure the generalizability
of our findings, we will confirm them using EHR data from the ongoing National COVID Cohort Collaborative
(N3C). Nationwide social context databases and time-varying COVID-19 severity and social distancing policies
will be added to S3C and N3c data. We will use the socio-ecological framework and employ a concurrent
triangulation, mixed methods study design to achieve three specific aims: 1) to examine the impacts of the
COVID-19 pandemic on racial/ethnic disparities in MMM; 2) to examine and explore how the key features of
social contexts have contributed to the widening of racial/ethnic disparities in MMM during the pandemic
(Aim 2a) and identify distinct mediating pathways through maternity care and mental health (Aim 2b); and 3)
to examine the role of social contextual factors and identify protective factors for racial/ethnic disparities in
pregnancy-related, long-standing morbidities using machine learning algorithms. For Aim 2b, a convergent
parallel design will be used, which includes a quantitative analysis of data from SC PRAMS and qualitative
interviews of postpartum women (20 Black, 20 Hispanics) and 10 maternal care providers. Our experienced
team is well positioned to investigate the complexity of racial disparities in MMM during the COVID-19
pandemic, while considering historical structural racism in a racially, socioeconomically, and geographically
diverse population of pregnant women. A rigorous examination of social contexts on racial/ethnic disparities in
MMM and mental health during the pandemic will inform continuing efforts to reverse the rising trends of
SMMM in the U.S. Our proposal addresses Areas 1, 2, & 4 in the NOT-OD-21-071.
摘要
在美国,每年有近60,000名妇女经历严重的孕产妇发病率和死亡率(SMMM),
即使在新冠肺炎大流行之前,按种族/族裔划分的健康差距也很大。史无前例的
新冠肺炎疫情对有色人种社区的打击最严重。非西班牙裔黑人和西班牙裔女性
怀孕的人似乎有不成比例的SARS-CoV-2感染和死亡率。有关以下问题:
新冠肺炎大流行对SMMM种族差异的影响及其动态和相互作用
诸如SMMM更广泛的社会背景等多层次决定因素仍然没有得到回答。首要目标是
这项研究的目的是调查产妇发病率和死亡率(MMM)的种族/民族差异,
社会背景(例如,居住隔离、种族隔离)的贡献作用和调解途径
贫穷、教育、失业和拥有住房方面的歧视)和他们长期的健康状况
产后后果。我们将通过研究新冠肺炎案例的分布和
南卡罗来纳州(SC)孕产妇健康的多水平决定因素,该州在
SMMM在历史上系统的南方背景下,在美国,我们将在现有的全州范围内建立
SC新冠肺炎队列(S3C)通过创建怀孕队列,将新冠肺炎检测数据链接到电子
2019年至2020年南加州所有出生人口的健康记录(EHR)和出生证明数据。以确保通用性
对于我们的发现,我们将使用正在进行的国家COVID队列合作的EHR数据进行确认
(N3C)。全国性的社会背景数据库和时变的新冠肺炎严重程度和社会距离政策
将添加到S3c和N3c数据中。我们将使用社会生态框架并同时雇用一名
三角测量、混合方法研究设计实现了三个具体目的:1)检查影响
新冠肺炎大流行关于MM中的种族/民族差异;2)检查和探索
在大流行期间,社会环境促成了MM中种族/民族差距的扩大
(目标2a)并确定通过产妇保健和心理健康进行调解的不同途径(目标2b);
审查社会背景因素的作用,并确定保护种族/民族差异的因素
使用机器学习算法的与怀孕有关的长期疾病。对于目标2b,收敛
将使用平行设计,其中包括对来自SC PRAM的数据进行定量分析和定性
采访了产后妇女(20名黑人,20名西班牙裔)和10名产妇护理提供者。我们经验丰富的
团队处于有利地位,可以在新冠肺炎期间调查MM种族差异的复杂性
大流行病,同时从种族、社会经济和地理角度考虑历史上的结构性种族主义
不同的孕妇群体。对社会背景下的种族/民族差距的严格审查
流行期间的MMM和心理健康将有助于继续努力扭转#年的上升趋势
我们的建议涉及NOT-OD-21-071中的区域1、2和4。
项目成果
期刊论文数量(68)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The impact of COVID-19 pandemic on the dynamic HIV care engagement among people with HIV: real-world evidence.
- DOI:10.1097/qad.0000000000003491
- 发表时间:2023-05-01
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Temporal Geospatial Analysis of COVID-19 Pre-Infection Determinants of Risk in South Carolina.
- DOI:10.3390/ijerph18189673
- 发表时间:2021-09-14
- 期刊:
- 影响因子:0
- 作者:Lyu T;Hair N;Yell N;Li Z;Qiao S;Liang C;Li X
- 通讯作者:Li X
Facilitators of Organizational Resilience Within South Carolina AIDS Service Organizations: Lessons Learned from the COVID-19 Pandemic.
- DOI:10.1007/s10461-023-04089-x
- 发表时间:2023-05-29
- 期刊:
- 影响因子:4.4
- 作者:Qiao, Shan;Shirley, Callie;Garrett, Camryn;Weissman, Sharon;Olatosi, Bankole;Li, Xiaoming
- 通讯作者:Li, Xiaoming
ODT FLOW: Extracting, analyzing, and sharing multi-source multi-scale human mobility.
- DOI:10.1371/journal.pone.0255259
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Li Z;Huang X;Hu T;Ning H;Ye X;Huang B;Li X
- 通讯作者:Li X
Investigating the relationships between concentrated disadvantage, place connectivity, and COVID-19 fatality in the United States over time.
- DOI:10.1186/s12889-022-14779-1
- 发表时间:2022-12-14
- 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoming Li其他文献
Xiaoming Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoming Li', 18)}}的其他基金
Big Data Analytics Emerging Scholar (e-Scholar) Program for Minority Students
少数民族学生大数据分析新兴学者(e-Scholar)计划
- 批准号:
10554786 - 财政年份:2023
- 资助金额:
$ 88.62万 - 项目类别:
University of South Carolina Big Data Health Science Conference
南卡罗来纳大学大数据健康科学会议
- 批准号:
10751656 - 财政年份:2023
- 资助金额:
$ 88.62万 - 项目类别:
Visualizing and predicting new and late HIV diagnosis in South Carolina: A Big Data approach
可视化和预测南卡罗来纳州新的和晚期的艾滋病毒诊断:大数据方法
- 批准号:
10815140 - 财政年份:2023
- 资助金额:
$ 88.62万 - 项目类别:
Informatics Approach to Identification and Deep Phenotyping of PASC Cases
PASC 病例识别和深度表型分析的信息学方法
- 批准号:
10574753 - 财政年份:2022
- 资助金额:
$ 88.62万 - 项目类别:
Utilizing All of Us data to examine the impact of COVID-19 on mental health among people living with HIV
利用 All of Us 数据研究 COVID-19 对 HIV 感染者心理健康的影响
- 批准号:
10657875 - 财政年份:2022
- 资助金额:
$ 88.62万 - 项目类别:
Curating a Knowledge Base for Individuals with Coinfection of HIV and SARS-CoV-2: EHR-based Data Mining
为 HIV 和 SARS-CoV-2 混合感染者打造知识库:基于 EHR 的数据挖掘
- 批准号:
10481286 - 财政年份:2022
- 资助金额:
$ 88.62万 - 项目类别:
Informatics Approach to Identification and Deep Phenotyping of PASC Cases
PASC 病例识别和深度表型分析的信息学方法
- 批准号:
10696087 - 财政年份:2022
- 资助金额:
$ 88.62万 - 项目类别:
Curating a Knowledge Base for Individuals with Coinfection of HIV and SARS-CoV-2: EHR-based Data Mining
为 HIV 和 SARS-CoV-2 混合感染者打造知识库:基于 EHR 的数据挖掘
- 批准号:
10665078 - 财政年份:2022
- 资助金额:
$ 88.62万 - 项目类别:
Big Data Health Science Fellow Program in Infectious Disease Research
传染病研究大数据健康科学研究生计划
- 批准号:
10666508 - 财政年份:2021
- 资助金额:
$ 88.62万 - 项目类别:
Big Data Health Science Fellow Program in Infectious Disease Research
传染病研究大数据健康科学研究生计划
- 批准号:
10311679 - 财政年份:2021
- 资助金额:
$ 88.62万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 88.62万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 88.62万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 88.62万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 88.62万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 88.62万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 88.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 88.62万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 88.62万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 88.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 88.62万 - 项目类别:
Studentship