Saturation of Synaptic Plasticity at Individual Dendritic Spines
单个树突棘突触可塑性的饱和
基本信息
- 批准号:10393380
- 负责人:
- 金额:$ 3.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AMPA ReceptorsAffectAlzheimer&aposs DiseaseAnimal ModelBioenergeticsBrainCalciumCellsChemosensitizationDataDendritesDendritic SpinesDisease ProgressionDown SyndromeDrug AddictionEnvironmentExcitatory SynapseExhibitsFluorescence Resonance Energy TransferFoundationsFragile X SyndromeFrequenciesFunctional disorderGlutamatesGoalsGrowthHippocampus (Brain)HumanImageImpairmentIndividualKnock-outKnowledgeLeadLearningLearning DisabilitiesMitochondriaMolecularN-Methyl-D-Aspartate ReceptorsNerve DegenerationNeurodegenerative DisordersNeurologicNeuronsOrganismPatternPharmacologyPhasePlayPositioning AttributeProcessRegulationResearchRodentRodent ModelRoleSignal PathwaySignal TransductionSignaling MoleculeSiteSliceStimulusStructureSurfaceSynapsesSynaptic plasticityTestingTimeTrainingVariantVertebral columnWorkautism spectrum disordercalmodulin-dependent protein kinase IIexperienceexperimental studyfallsimaging studyimprovedknockout animallearning outcomemitochondrial dysfunctionnervous system disorderneuronal circuitrynew therapeutic targetpost-doctoral trainingpostsynapticpre-doctoralresponsesensorsynaptic functiontargeted treatmenttransmission processtwo-photon
项目摘要
Abstract
The ability of organisms to learn is crucial for them to survive and adapt to new environments. Learning relies
on the brain’s capacity to change the connections between neurons to alter circuit functions, or synaptic plasticity.
Dysfunction in the regulation of synaptic plasticity, or ability of the brain to change in response to stimuli, has
been implicated in neurological disorders like Alzheimer’s disease, autism spectrum disorder and drug addiction.
Much of the research on the synaptic plasticity associated with learning has focused on dendritic spines,
membranous protrusions that are the postsynaptic sites of excitatory transmission in the cortex. Notably, learning
in humans is improved when breaks are incorporated into learning sessions, in a process called spaced learning.
Notably, spaced training increases learning in rodent models of Fragile X, Angelman’s and Down syndromes,
which are learning impaired. One idea is that the need for breaks is due to a temporary saturation of plasticity at
the synapses involved in this learning. Indeed, it has been shown that saturation of potentiation leads to
impairment of learning in animal models. After an initial stimulation leads to circuit potentiation, a second stimulus
is unable to produce potentiation unless the intervals between stimuli were increased. However, the mechanisms
that lead to saturation of plasticity remain poorly defined. The goal of this proposal is to determine the cellular
and molecular mechanisms by which this saturation occurs. My current data show that saturation of synaptic
strengthening occurs at individual synapse level and that the saturation occurs via postsynaptic mechanisms.
My data also demonstrate that saturation of synaptic strengthening at individual spines can be overcome by
increased levels of stimulation and that saturation is also release over time as spines stimulated 60 minutes after
their initial stimulation are able to exhibit further synaptic strengthening. Finally, my data show that CaMKII
activity is reduced in spines which are experiencing saturation. Using 2-photon (2p) imaging, 2p glutamate
uncaging, calcium imaging and conditional single cell knock out animals, I propose to rigorously investigate the
molecular and cellular mechanisms that drive saturation of plasticity at individual spines. The results of these
experiments will further our knowledge of synaptic plasticity and its limitations and could elucidate novel drug
targets for the treatment of neurological disorders and learning disabilities. After completing my dissertation, I
intend to pursue a postdoctoral position studying the role of mitochondrial signaling and dysfunction in
neurodegenerative diseases. The proposed experiments and training plan will provide a strong foundation for
my transition to postdoctoral training and will support me in my long-term goal of an academic research position.
摘要
生物体的学习能力对于它们生存和适应新环境至关重要。学习依赖于
对大脑改变神经元之间的连接以改变电路功能或突触可塑性的能力。
突触可塑性的调节功能障碍,或大脑对刺激做出反应的能力,
与神经系统疾病如阿尔茨海默氏病、自闭症谱系障碍和药物成瘾有关。
许多关于学习相关突触可塑性的研究都集中在树突棘上,
膜突起,是皮层中兴奋性传递的突触后位点。值得注意的是,
在一个叫做间隔学习的过程中,当休息被纳入学习过程时,人类的学习能力会得到改善。
值得注意的是,间隔训练增加了脆性X染色体、安格尔曼综合征和唐氏综合征啮齿动物模型的学习能力,
有学习障碍的孩子一种观点认为,断裂的需要是由于塑性的暂时饱和,
参与这种学习的突触事实上,已经表明,增强作用的饱和导致
动物模型中的学习障碍。在初始刺激导致回路增强后,第二刺激
除非刺激之间的间隔增加,否则不能产生增强作用。然而,机制
导致塑性饱和的因素仍然没有得到很好的定义。该提案的目标是确定蜂窝
以及这种饱和发生的分子机制。我目前的数据显示,
加强发生在单个突触水平,饱和通过突触后机制发生。
我的数据还表明,在个别棘突触强化饱和可以克服,
刺激水平增加,并且当刺激60分钟后刺激脊柱时,饱和度也随时间释放
它们的初始刺激能够表现出进一步的突触强化。最后,我的数据显示CaMKII
在经历饱和的棘中活动减少。使用双光子(2p)成像,2p谷氨酸
uncaging,钙成像和条件性单细胞敲除动物,我建议严格调查
分子和细胞机制驱动个体棘的可塑性饱和。的结果予以
实验将进一步加深我们对突触可塑性及其局限性的认识,并可能阐明新的药物
治疗神经系统疾病和学习障碍的目标。在完成我的论文后,我
我打算攻读博士后职位,研究线粒体信号传导和功能障碍在
神经退行性疾病拟议的实验和培训计划将为以下方面提供坚实的基础:
我的过渡到博士后培训,并将支持我在我的学术研究职位的长期目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan C Flores其他文献
Juan C Flores的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan C Flores', 18)}}的其他基金
Saturation of Synaptic Plasticity at Individual Dendritic Spines
单个树突棘突触可塑性的饱和
- 批准号:
10505839 - 财政年份:2021
- 资助金额:
$ 3.94万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 3.94万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 3.94万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 3.94万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 3.94万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 3.94万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 3.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 3.94万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 3.94万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 3.94万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 3.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




