Representation of navigational and driving-related information across human brain
人脑中导航和驾驶相关信息的表示
基本信息
- 批准号:10392486
- 负责人:
- 金额:$ 44.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AgingAnimalsAreaAutomobile DrivingBehaviorBrainBrain DiseasesComputer ModelsDataData AnalysesData SetDestinationsDevicesDiagnosisEnvironmentFunctional Magnetic Resonance ImagingGoalsHumanImageImpairmentIndividualLaboratoriesLinkLiteratureLocationMagnetic Resonance ImagingMeasurableMeasuresMediatingMethodologyMethodsModelingMonitorMotorNeurodegenerative DisordersPathway AnalysisProcessPublicationsPublishingQuality of lifeResearchResolutionRodentRouteSensorySeriesSignal TransductionSystemTestingVeinsWorkcognitive systemexperimental studyhigh dimensionalityimprovedinnovationinsightnervous system disorderneuroimagingneuromechanismneurophysiologypredictive modelingskillsvirtual environmentvirtual worldway finding
项目摘要
ABSTRACT
Natural navigation is an important skill that engages many sensory, motor and cognitive systems. Because
aging and degenerative brain disease both diminish the capacity to navigate in the real world, a better
understanding of the brain mechanisms mediating navigation will improve diagnosis and monitoring of
neurological and neurodegenerative diseases. Neurophysiological studies in animals have led to fundamental
insights about the neural mechanisms mediating navigation. However, due to methodological limitations
neuroimaging studies of navigation in humans have generally been less compelling than the animal work. We
propose to overcome these limitations by using the NexGen 7T MRI scanner recently installed at UC Berkeley
to measure brain activity during a naturalistic driving task. Driving is an excellent target for fMRI studies
because is a common human navigation task that unfolds across a large and varied landscape, and on a
timescale commensurate with fMRI; it engages many navigational brain systems; and it is impacted by aging
and neurological diseases. Data will be analyzed by means of an innovative and powerful voxelwise modeling
framework developed in PI Gallant's lab over the past 10 years, and validated in many publications.
Computational models reflecting 33 different types of navigational features will be fit to the fMRI data
separately for each voxel and in each individual subject. Model prediction accuracy and generalization will be
cross-validated using separate data sets and subjects reserved for this purpose. The results will be used to test
dozens of specific hypotheses about navigation drawn from the theoretical and experimental literature on both
rodents and humans. These results will also be used to obtain a detailed functional parcellation of navigational
representations in each individual and across the group, and to identify functional networks that represent
specific navigation-related features. By combining naturalistic experiments, large-scale computational
modeling, multiple hypothesis testing, data-driven functional parcellation and functional network analysis, this
research will provide fundamental new information about the human brain mechanisms mediating navigation
and their relationship to prior findings from the animal literature.
摘要
自然导航是一项重要的技能,涉及许多感官,运动和认知系统。因为
衰老和退化性脑部疾病都降低了在真实的世界中航行的能力,
了解大脑机制介导导航将改善诊断和监测
神经和神经变性疾病。动物神经生理学研究已经导致了
关于神经机制介导导航的见解。然而,由于方法上的限制,
人类导航的神经影像学研究通常不如动物研究那么引人注目。我们
我建议通过使用最近安装在加州大学伯克利分校的NexGen 7 T MRI扫描仪来克服这些限制
来测量自然驾驶任务中的大脑活动。驾驶是功能磁共振成像研究的一个很好的目标
因为这是一个常见的人类导航任务,在一个巨大而多样的景观中展开,
与功能性磁共振成像相当的时间尺度;它涉及许多导航大脑系统;并且它受到年龄的影响
和神经系统疾病。数据将通过创新和强大的体素建模进行分析
该框架在PI Gallant的实验室在过去10年中开发,并在许多出版物中得到验证。
反映33种不同类型的导航功能的计算模型将适合功能磁共振成像数据
分别针对每个体素和每个个体受试者。模型预测精度和泛化能力将
使用单独的数据集和为此目的保留的主题进行交叉验证。结果将用于测试
几十个关于导航的具体假设,来自理论和实验文献,
啮齿动物和人类。这些结果也将用于获得详细的功能分区的导航
每个人和整个群体中的代表,并确定代表的功能网络
具体的导航功能。通过结合自然主义实验,大规模计算
建模、多重假设检验、数据驱动的功能划分和功能网络分析,
这项研究将提供有关人脑调节导航机制的基本新信息
以及它们与动物文献中先前发现的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JACK L GALLANT其他文献
JACK L GALLANT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JACK L GALLANT', 18)}}的其他基金
Representation of navigational and driving-related information across human brain
人脑中导航和驾驶相关信息的表示
- 批准号:
10210811 - 财政年份:2021
- 资助金额:
$ 44.35万 - 项目类别:
Representation of navigational and driving-related information across human brain
人脑中导航和驾驶相关信息的表示
- 批准号:
10643804 - 财政年份:2021
- 资助金额:
$ 44.35万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 44.35万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 44.35万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 44.35万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 44.35万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 44.35万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 44.35万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 44.35万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 44.35万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 44.35万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 44.35万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




