Representation of navigational and driving-related information across human brain
人脑中导航和驾驶相关信息的表示
基本信息
- 批准号:10392486
- 负责人:
- 金额:$ 44.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AgingAnimalsAreaAutomobile DrivingBehaviorBrainBrain DiseasesComputer ModelsDataData AnalysesData SetDestinationsDevicesDiagnosisEnvironmentFunctional Magnetic Resonance ImagingGoalsHumanImageImpairmentIndividualLaboratoriesLinkLiteratureLocationMagnetic Resonance ImagingMeasurableMeasuresMediatingMethodologyMethodsModelingMonitorMotorNeurodegenerative DisordersPathway AnalysisProcessPublicationsPublishingQuality of lifeResearchResolutionRodentRouteSensorySeriesSignal TransductionSystemTestingVeinsWorkcognitive systemexperimental studyhigh dimensionalityimprovedinnovationinsightnervous system disorderneuroimagingneuromechanismneurophysiologypredictive modelingskillsvirtual environmentvirtual worldway finding
项目摘要
ABSTRACT
Natural navigation is an important skill that engages many sensory, motor and cognitive systems. Because
aging and degenerative brain disease both diminish the capacity to navigate in the real world, a better
understanding of the brain mechanisms mediating navigation will improve diagnosis and monitoring of
neurological and neurodegenerative diseases. Neurophysiological studies in animals have led to fundamental
insights about the neural mechanisms mediating navigation. However, due to methodological limitations
neuroimaging studies of navigation in humans have generally been less compelling than the animal work. We
propose to overcome these limitations by using the NexGen 7T MRI scanner recently installed at UC Berkeley
to measure brain activity during a naturalistic driving task. Driving is an excellent target for fMRI studies
because is a common human navigation task that unfolds across a large and varied landscape, and on a
timescale commensurate with fMRI; it engages many navigational brain systems; and it is impacted by aging
and neurological diseases. Data will be analyzed by means of an innovative and powerful voxelwise modeling
framework developed in PI Gallant's lab over the past 10 years, and validated in many publications.
Computational models reflecting 33 different types of navigational features will be fit to the fMRI data
separately for each voxel and in each individual subject. Model prediction accuracy and generalization will be
cross-validated using separate data sets and subjects reserved for this purpose. The results will be used to test
dozens of specific hypotheses about navigation drawn from the theoretical and experimental literature on both
rodents and humans. These results will also be used to obtain a detailed functional parcellation of navigational
representations in each individual and across the group, and to identify functional networks that represent
specific navigation-related features. By combining naturalistic experiments, large-scale computational
modeling, multiple hypothesis testing, data-driven functional parcellation and functional network analysis, this
research will provide fundamental new information about the human brain mechanisms mediating navigation
and their relationship to prior findings from the animal literature.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JACK L GALLANT其他文献
JACK L GALLANT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JACK L GALLANT', 18)}}的其他基金
Representation of navigational and driving-related information across human brain
人脑中导航和驾驶相关信息的表示
- 批准号:
10210811 - 财政年份:2021
- 资助金额:
$ 44.35万 - 项目类别:
Representation of navigational and driving-related information across human brain
人脑中导航和驾驶相关信息的表示
- 批准号:
10643804 - 财政年份:2021
- 资助金额:
$ 44.35万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 44.35万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 44.35万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 44.35万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 44.35万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 44.35万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 44.35万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 44.35万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 44.35万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 44.35万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 44.35万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




