Molecular Biophysics of Mitochondrial Membranes
线粒体膜的分子生物物理学
基本信息
- 批准号:10393582
- 负责人:
- 金额:$ 48.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:AddressBioenergeticsBiophysicsCellsChemicalsChemosensitizationCitric Acid CycleEnzymesFatty LiverFoundationsGenerationsInner mitochondrial membraneIon TransportMeasuresMediatingMembrane Transport ProteinsMetabolic DiseasesMethodsMitochondriaMolecularNon-Insulin-Dependent Diabetes MellitusNonesterified Fatty AcidsObesityPharmaceutical PreparationsPharmacologyPhysiologyPower PlantsProteinsResearchStructureTherapeutic Human Experimentationmitochondrial membranepatch clampuptakevoltage
项目摘要
Project Summary
This project is focused on understanding of the molecular mechanisms that control energy conversion within
the cell power plant, the mitochondrion. Transport of ion and metabolites across the inner mitochondrial
membrane is the foundation of mitochondrial physiology. Here we study the molecular mechanisms involved in
passive uptake of H+ (“mitochondrial H+ leak”) and Ca2+ (“mitochondrial Ca2+ uptake”) into mitochondria down
the negative voltage () across the inner mitochondrial membrane. The mitochondrial H+ leak is responsible
for the conversion of chemical energy of mitochondrial substrates into heat. The mitochondrial Ca2+ uptake lets
Ca2+ enter mitochondria during cytosolic Ca2+ transients to stimulate Ca2+-dependent enzymes of the Krebs
cycle and mitochondrial energy conversion. The mitochondrial H+ leak and Ca2+ uptake are mediated by
specialized integral proteins of the inner mitochondrial membrane called uncoupling proteins (UCPs) and
mitochondrial Ca2+ uniporter (MCU) correspondingly. The molecular and functional characterization of UCPs
and MCU has been difficult due to the inability to measure H+ and Ca2+ currents across the inner mitochondrial
membrane directly. We have resolved this major technical barrier and developed a method for direct patch-
clamp recording of UCP and MCU currents across the whole inner mitochondrial membrane. Using this
method, we propose to address the structure-function relations within UCPs and MCU to understand the
molecular mechanisms that govern H+ and Ca2+ translocation via these membrane transport proteins. For
UCPs, we plan to identify the mechanisms by which free fatty acids, the endogenous UCPs activators, cause
H+ translocation via UCPs. We also propose to develop a new generation of drugs that can activate H+ leak
via UCP and be used for the treatment of type II diabetes, obesity, and fatty liver. For MCU, we propose to
reveal the molecular mechanisms responsible for the exceptionally high Ca2+ selectivity of MCU, the MCU
inward rectification (one-way permeation of Ca2+ into mitochondria), and the MCU potentiation by cytosolic
Ca2+. This research will resolve several long-standing problems in the field of bioenergetics and will eventually
enable pharmacological control of key mitochondrial functions in therapeutic and research purposes.
项目摘要
这个项目的重点是了解控制体内能量转换的分子机制。
细胞动力装置,线粒体。离子和代谢物通过内部线粒体的运输
膜是线粒体生理学的基础。在这里,我们研究涉及到的分子机制
线粒体被动摄取H+(“线粒体H+漏”)和钙(“线粒体钙摄取”)向下
跨内线粒体膜的负电压()。线粒体H+泄漏是
用于将线粒体底物的化学能转化为热。线粒体钙摄取使
胞浆钙瞬变过程中钙离子进入线粒体刺激Krebs细胞内钙依赖酶
循环和线粒体能量转换。线粒体H+漏和钙摄取是由
线粒体内膜的特殊完整蛋白称为解偶联蛋白(UCPs)和
相应的线粒体钙单转运体(MCU)。UCPs的分子和功能表征
由于无法测量线粒体内部的H+和Ca~(2+)电流,MCU一直很困难
直接用膜分离。我们解决了这一重大技术障碍,并开发了一种直接贴片的方法--
钳位记录整个线粒体膜上的UCP和MCU电流。使用这个
方法,我们建议处理UCP和MCU内部的结构-功能关系,以理解
通过这些膜转运蛋白控制H+和Ca~(2+)转运的分子机制。为
,我们计划确定游离脂肪酸,内源性UCPs激活剂,导致
通过UCPs的H+转运。我们还提议开发能够激活H+泄漏的新一代药物
通过UCP,用于治疗II型糖尿病、肥胖症和脂肪肝。对于MCU,我们建议
揭示MCU异常高的钙离子选择性的分子机制
内向整流(钙离子单向渗透到线粒体),以及胞浆对MCU的增强作用
Ca2+。这项研究将解决生物能量学领域的几个长期存在的问题,并最终将
在治疗和研究目的上实现对关键线粒体功能的药理学控制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuriy Kirichok其他文献
Yuriy Kirichok的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuriy Kirichok', 18)}}的其他基金
Molecular Biophysics of Mitochondrial Membranes
线粒体膜的分子生物物理学
- 批准号:
10665451 - 财政年份:2020
- 资助金额:
$ 48.13万 - 项目类别:
Molecular Biophysics of Mitochondrial Membranes
线粒体膜的分子生物物理学
- 批准号:
10620143 - 财政年份:2020
- 资助金额:
$ 48.13万 - 项目类别:
Molecular Mechanisms of Mitochondrial Uncoupling and Thermogenesis
线粒体解偶联和产热的分子机制
- 批准号:
9441782 - 财政年份:2017
- 资助金额:
$ 48.13万 - 项目类别:
Mitochondrial Uncoupling and Thermogenesis in Adipose Tissues
脂肪组织中的线粒体解偶联和产热
- 批准号:
9139961 - 财政年份:2015
- 资助金额:
$ 48.13万 - 项目类别:
Molecular Mechanisms that Control Ca2+ Signaling in Human Spermatozoa
控制人类精子中 Ca2 信号传导的分子机制
- 批准号:
8255437 - 财政年份:2011
- 资助金额:
$ 48.13万 - 项目类别:
Molecular Mechanisms that Control Ca2+ Signaling in Human Spermatozoa
控制人类精子中 Ca2 信号传导的分子机制
- 批准号:
8429985 - 财政年份:2011
- 资助金额:
$ 48.13万 - 项目类别:
Molecular Mechanisms that Control Ca2+ Signaling in Human Spermatozoa
控制人类精子中 Ca2 信号传导的分子机制
- 批准号:
8605461 - 财政年份:2011
- 资助金额:
$ 48.13万 - 项目类别:
Molecular Mechanisms that Control Ca2+ Signaling in Human Spermatozoa
控制人类精子中 Ca2 信号传导的分子机制
- 批准号:
8088018 - 财政年份:2011
- 资助金额:
$ 48.13万 - 项目类别:
相似海外基金
Control of epithelial morphology and bioenergetics by Toll receptors during dynamic tissue remodeling
动态组织重塑过程中 Toll 受体对上皮形态和生物能的控制
- 批准号:
10737093 - 财政年份:2023
- 资助金额:
$ 48.13万 - 项目类别:
Mitochondria-rich microvesicles for restoration of intracellular bioenergetics
富含线粒体的微泡用于恢复细胞内生物能
- 批准号:
10586699 - 财政年份:2023
- 资助金额:
$ 48.13万 - 项目类别:
Defining the mechanisms of MSC extracellular vesicle modulation of microglia metabolism and bioenergetics in traumatic brain injury recovery
定义MSC细胞外囊泡调节小胶质细胞代谢和生物能学在创伤性脑损伤恢复中的机制
- 批准号:
10719905 - 财政年份:2023
- 资助金额:
$ 48.13万 - 项目类别:
Characterizing Alzheimer's Risk in Retired Night Shift Workers: Cognitive Function, Brain Volume, and Brain Bioenergetics
退休夜班工人患阿尔茨海默病的风险特征:认知功能、脑容量和脑生物能学
- 批准号:
10350125 - 财政年份:2022
- 资助金额:
$ 48.13万 - 项目类别:
To everything a season: bioenergetics in seasonal environments
季节的一切:季节性环境中的生物能学
- 批准号:
RGPIN-2020-06705 - 财政年份:2022
- 资助金额:
$ 48.13万 - 项目类别:
Discovery Grants Program - Individual
The role of transcription factor Ying-Yang 1 in the cardiac bioenergetics regulation
转录因子Ying-Yang 1在心脏生物能调节中的作用
- 批准号:
10688160 - 财政年份:2022
- 资助金额:
$ 48.13万 - 项目类别:
Modulating Cellular Bioenergetics to Improve Skeletal Health
调节细胞生物能量以改善骨骼健康
- 批准号:
10661806 - 财政年份:2022
- 资助金额:
$ 48.13万 - 项目类别:
Unraveling the Associations of Molecular-Genetic Bioenergetics and Chemotherapy-Induced Fatigue Symptoms in Patients with Breast Cancer
揭示乳腺癌患者分子遗传学生物能学与化疗引起的疲劳症状之间的关联
- 批准号:
10684326 - 财政年份:2022
- 资助金额:
$ 48.13万 - 项目类别:
Bioenergetics and Neuronal Network Remodeling in a Rodent Model of Temporal Lobe Epilepsy
颞叶癫痫啮齿动物模型中的生物能量学和神经元网络重塑
- 批准号:
10373152 - 财政年份:2022
- 资助金额:
$ 48.13万 - 项目类别:














{{item.name}}会员




