HistoTools: A suite of digital pathology tools for quality control, annotation and dataset identification

HistoTools:一套用于质量控制、注释和数据集识别的数字病理学工具

基本信息

项目摘要

ABSTRACT: Roughly 40% of the US population will be diagnosed with some form of cancer in their lifetime. In a majority of these cases, a definitive cancer diagnosis is only possible via histopathologic confirmation using a tissue slide. Increasingly, these slides are being digitally scanned as high-resolution images for usage in both clinical and research digital pathology (DP) workflows. Our group has been pioneering the use of deep learning (DL), a form of machine learning, for segmentation, detection, and classification of various cancers using digital pathology images. DL learns features and their associated weighting from large datasets to maximally discriminate between user labeled data (e.g., cancer vs non-cancer, nuclei vs non-nuclei); a paradigm known as “learn from data”. Unfortunately, this paradigm makes DL especially sensitive to low quality slides, noise induced by small errors in the manual user labeling process, and general dataset heterogeneity. As many groups do not intentionally account for these problems, they learn that successful employment of DL technologies relies heavily on explicitly addressing challenges associated with (a) carefully curating high quality slides without preparation or scanning artifacts, (b) obtaining a large precise collection of annotations delineating objects of interest, and (c) selecting diverse datasets to ensure robust classifier performance when clinically deploying the model. To address these challenges we propose HistoTools, a suite of three modules or “Apps”: (1) HistoQC examines slides for artifacts and computes metrics associated with slide presentation characteristics (e.g., stain intensity, compression levels) helping to quantify ranges of acceptable characteristics for downstream algorithmic evaluation. (2) HistoAnno drastically improves the efficiency of annotation efforts using a combined active learning and deep learning approach to ensure experts focus only on regions which are important for classifier improvement. (3) HistoFinder aids in selecting suitable training and test cohorts to guarantee that various tissue level characteristics are well balanced, leading to increased reproducibility. Our team already has working prototypes of HistoQC (100% concordance with a pathologist, evaluated on n>1200 slides) and HistoAnno (30% efficiency improvement during annotation tasks). In this U01, we seek to further develop and evaluate HistoTools in the context of enhancing two companion diagnostic (CDx) assays being developed in our group. First, we will use HistoTools to quality control and annotate nuclei, tubules, and mitosis for improving our CDx classifier for predicting recurrence in breast cancers using a cohort of n>900 patients from completed trial ECOG 2197. Secondly, HistoTools will be employed for quality control and identification of tumor infiltrating lymphocytes and cancer nuclei towards improving our CDx classifier for predicting response to immunotherapy in lung cancer using the n>700 patients from completed clinical trials Checkmate 017 and 057. These tools will build on our existing open source tool repository to aid in real-time feedback and dissemination throughout the ITCR and cancer research community.
摘要:大约 40% 的美国人在一生中会被诊断出患有某种癌症。在 在大多数病例中,只有通过使用组织病理学确认才能做出明确的癌症诊断 组织载玻片。这些幻灯片越来越多地被数字扫描为高分辨率图像,以供在以下领域使用: 临床和研究数字病理学 (DP) 工作流程。我们的团队一直是深度学习应用的先驱 (DL),一种机器学习形式,用于使用数字技术对各种癌症进行分割、检测和分类 病理图像。深度学习从大型数据集中学习特征及其相关权重 区分用户标记的数据(例如,癌症与非癌症、细胞核与非细胞核);已知的范式 作为“从数据中学习”。不幸的是,这种范式使得深度学习对低质量幻灯片、噪声特别敏感 由手动用户标记过程中的小错误和一般数据集异质性引起。一样多 团体并没有故意解释这些问题,他们了解到 DL 的成功就业 技术在很大程度上依赖于明确解决与以下方面相关的挑战:(a) 精心策划高 无需准备或扫描伪影即可获得高质量载玻片,(b) 获得大量精确的注释集合 描绘感兴趣的对象,以及(c)选择不同的数据集以确保鲁棒的分类器性能 临床部署该模型。为了应对这些挑战,我们提出了 HistoTools,这是一套包含三个模块的工具 或“应用程序”:(1) HistoQC 检查幻灯片中的伪影并计算与幻灯片演示相关的指标 特征(例如染色强度、压缩水平)有助于量化可接受的范围 下游算法评估的特征。 (2) HistoAnno大幅提高了效率 使用主动学习和深度学习相结合的方法进行注释工作,以确保专家只关注 对分类器改进很重要的区域。 (3) HistoFinder 帮助选择合适的训练 和测试队列,以保证各种组织水平特征的良好平衡,从而导致增加 再现性。我们的团队已经拥有 HistoQC 的工作原型(与病理学家 100% 一致, 在 n>1200 张幻灯片上进行评估)和 HistoAnno(注释任务期间效率提高 30%)。在这个U01中, 我们寻求在增强两种伴随诊断的背景下进一步开发和评估 HistoTools 我们小组正在开发 (CDx) 检测方法。首先,我们将使用 HistoTools 进行质量控制和注释细胞核, 肾小管和有丝分裂,以改进我们的 CDx 分类器,以使用队列预测乳腺癌复发 来自已完成试验 ECOG 2197 的 n> 900 名患者。 其次,将采用 HistoTools 进行质量控制 以及肿瘤浸润淋巴细胞和癌核的识别,以改进我们的 CDx 分类器 使用已完成的临床试验中 n>700 名患者预测肺癌免疫治疗的反应 Checkmate 017 和 057。这些工具将构建在我们现有的开源工具存储库上,以提供实时帮助 在整个 ITCR 和癌症研究界进行反馈和传播。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(3)
Update on the current opinion, status and future development of digital pathology in Switzerland in light of COVID-19.
  • DOI:
    10.1136/jclinpath-2021-207768
  • 发表时间:
    2021-09-13
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Koelzer VH;Grobholz R;Zlobec I;Janowczyk A;Swiss Digital Pathology Consortium (SDiPath)
  • 通讯作者:
    Swiss Digital Pathology Consortium (SDiPath)
Current opinion, status and future development of digital pathology in Switzerland.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Robert Janowczyk其他文献

Andrew Robert Janowczyk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Robert Janowczyk', 18)}}的其他基金

Histotools: scaling digital pathology curation tools for quality control, annotation, labeling, and dataset identification
Histotools:用于质量控制、注释、标记和数据集识别的扩展数字病理学管理工具
  • 批准号:
    10708011
  • 财政年份:
    2022
  • 资助金额:
    $ 28.1万
  • 项目类别:
HistoTools: A suite of digital pathology tools for quality control, annotation and dataset identification
HistoTools:一套用于质量控制、注释和数据集识别的数字病理学工具
  • 批准号:
    9897498
  • 财政年份:
    2019
  • 资助金额:
    $ 28.1万
  • 项目类别:
HistoTools: A suite of digital pathology tools for quality control, annotation and dataset identification
HistoTools:一套用于质量控制、注释和数据集识别的数字病理学工具
  • 批准号:
    10116983
  • 财政年份:
    2019
  • 资助金额:
    $ 28.1万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 28.1万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.1万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 28.1万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.1万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 28.1万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 28.1万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.1万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 28.1万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 28.1万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.1万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了