Molecular mechanisms of cochlear hair bundle mechanics
耳蜗毛束力学的分子机制
基本信息
- 批准号:10393598
- 负责人:
- 金额:$ 44.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-07 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseAcuteApicalAuditoryAuditory systemAutomobile DrivingBilateral Hearing LossBiological AssayBiologyCRISPR/Cas technologyCalciumCellsCochleaComplexConsumptionCoupledCytoskeletonDNA Sequence AlterationDataDefectDevelopmentDiscriminationDiseaseElectrophysiology (science)FrequenciesGenerationsGenesGenetic studyHairHair CellsHearingHumanImageInvestigationKnowledgeLeadLinkLipidsMYO7A geneMammalsMechanicsMechanoreceptor CellMediatingMembrane LipidsModelingMolecularMonitorMorphologyMotorMutationMyosin ATPaseOuabainPeptide HydrolasesPersonsPharmacologyPositioning AttributePreventionProcessPropertyProtein IsoformsProteinsRanaReportingRoleSensorySensory HairSideSignal TransductionSiteSpeedStimulusSulfateSystemTechnologyTestingTherapeuticTranslatingTurtlesVanadatesWorkanalogauditory processingbasecell motilitydeafnessexperienceexperimental studyextracellularhearing impairmenthearing restorationin vivoinhibitormechanotransductionmouse modelmyosin XVAneuronal cell bodynew technologyreceptorresponsesoundvibration
项目摘要
Project Summary
Cochlear amplification is the process by which our auditory system amplifies and tunes responses to
incoming sounds, bestowing us with our excellent sound level sensitivity, large dynamic range, and fine
frequency discrimination. Auditory sensory cells have two processes hypothesized to contribute to cochlear
amplification: somatic motility that occurs in the cell soma and active hair bundle mechanics that occurs in the
apical stereocilia hair bundle. To assay the contribution of active hair bundle mechanics to cochlear amplification
requires further understanding of the processes related to it. Hair cell mechanotransduction (MET), the process
of converting sound stimuli into electrical signals in the hair bundle, is the driver of active hair bundle mechanics.
MET adaptation is one key mechanism that is hypothesized to contribute to active hair bundle mechanics.
Previous work in non-mammalian models show that adaptation is separated into fast and slow processes, both
of which rely on the influx of calcium to drive the process. Data in the mammalian cochlea indicate that adaptation
also consists of fast and slow components, but our work shows that the underlying biology driving the fast and
slow processes in the cochlea is fundamentally different from what has been previously reported in non-
mammalian hair cells. Thus, new investigations are needed to understand the molecular machinery responsible
for both fast and slow adaptation, and their contributions to mammalian auditory processing.
From new data about properties of cochlear MET, we hypothesize that tension is essential for adaptation
mechanisms. In Aim 1 of this study, we will investigate the contribution of myosin motors to adaptation and hair
bundle mechanics. We assay this using new, faster stimulation and high-speed imaging to monitor mechanical
changes in the hair bundle coupled with hair cell electrophysiology and pharmacological manipulation. With
numerous myosin motors known to be important for auditory function, in Aim 2 we will explore the contributions
of specific myosin motors to adaptation and hair bundle mechanics using existing mouse models. For Aim 3, we
developed a new mouse model using CRISPR/Cas9 technology to acutely inactivate myosin VIIa motor function,
and we will assess the role of myosin VIIa in tension generation.
The experiments in this proposal will further our understanding of the molecular mechanisms of mammalian
cochlear adaptation and hair bundle mechanics to develop a new model of the mammalian auditory MET
process. We are uniquely positioned to accomplish this with the new technologies that we have and continue to
develop. Basic mechanistic knowledge of auditory MET will lead to experiments where we can interrogate the
system in vivo to determine specific molecular contributions to cochlear amplification. Understanding cochlear
amplification can lead to better prevention and/or restoration of hearing.
项目摘要
耳蜗放大是我们的听觉系统放大和调谐对声音的反应的过程。
传入的声音,赋予我们出色的声级灵敏度,大动态范围,
频率鉴别听觉感觉细胞有两个过程假设有助于耳蜗
扩增:发生在细胞索马中的体细胞运动和发生在细胞中的活跃的毛束力学。
顶端静纤毛毛束。分析主动毛束力学对耳蜗放大的贡献
需要进一步了解与之相关的过程。毛细胞机械转导(MET),这一过程
将声音刺激转换为发束中的电信号的过程,是主动发束力学的驱动器。
MET适应是一个关键机制,假设有助于活跃的毛束力学。
以前在非哺乳动物模型中的工作表明,适应分为快速和缓慢的过程,
其中依赖于钙的流入来驱动这一过程。哺乳动物耳蜗的数据表明,
也由快和慢的成分组成,但我们的工作表明,驱动快和慢的基本生物学,
耳蜗中的缓慢过程与以前在非耳蜗中报道的过程根本不同,
哺乳动物的毛细胞因此,需要新的研究来了解负责的分子机制
快速和缓慢的适应,以及它们对哺乳动物听觉处理的贡献。
从关于耳蜗MET特性的新数据中,我们假设张力对于适应是必不可少的
机制等在本研究的目的1中,我们将研究肌球蛋白马达对适应和毛发的贡献。
束力学我们使用新的,更快的刺激和高速成像来监测机械
毛束的变化与毛细胞电生理学和药理学操作相结合。与
已知许多肌球蛋白马达对听觉功能很重要,在目标2中,我们将探讨肌球蛋白马达的作用。
特定的肌球蛋白马达的适应和毛束力学使用现有的小鼠模型。目标3:
使用CRISPR/Cas9技术开发了一种新的小鼠模型,以急性抑制肌球蛋白VIIa运动功能,
我们将评估肌球蛋白VIIa在张力产生中的作用。
本实验将进一步加深我们对哺乳动物细胞凋亡的分子机制的认识
耳蜗适应和毛束力学,以开发哺乳动物听觉MET的新模型
过程我们拥有独特的优势,可以利用我们拥有的新技术实现这一目标,并将继续
开发.听觉MET的基本机械知识将导致实验,我们可以询问
系统在体内,以确定特定的分子贡献耳蜗放大。了解耳蜗
放大可以导致更好的听力预防和/或恢复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony Wei Peng其他文献
Anthony Wei Peng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anthony Wei Peng', 18)}}的其他基金
Aging and Dysfunction in the Peripheral Vestibular System
周围前庭系统的衰老和功能障碍
- 批准号:
10840176 - 财政年份:2021
- 资助金额:
$ 44.48万 - 项目类别:
Aging and Dysfunction in the Peripheral Vestibular System
周围前庭系统的衰老和功能障碍
- 批准号:
10633226 - 财政年份:2021
- 资助金额:
$ 44.48万 - 项目类别:
Aging and Dysfunction in the Peripheral Vestibular System
周围前庭系统的衰老和功能障碍
- 批准号:
10587559 - 财政年份:2021
- 资助金额:
$ 44.48万 - 项目类别:
Aging and Dysfunction in the Peripheral Vestibular System
周围前庭系统的衰老和功能障碍
- 批准号:
10273846 - 财政年份:2021
- 资助金额:
$ 44.48万 - 项目类别:
Molecular mechanisms of cochlear hair bundle mechanics
耳蜗毛束力学的分子机制
- 批准号:
10164753 - 财政年份:2018
- 资助金额:
$ 44.48万 - 项目类别:
Molecular mechanisms of cochlear hair bundle mechanics
耳蜗毛束力学的分子机制
- 批准号:
9920119 - 财政年份:2018
- 资助金额:
$ 44.48万 - 项目类别:
Molecular roles in active and passive mechanics in cochlear hair bundles
耳蜗毛束主动和被动力学中的分子作用
- 批准号:
9127233 - 财政年份:2015
- 资助金额:
$ 44.48万 - 项目类别:
Molecular roles in active and passive mechanics in cochlear hair bundles
耳蜗毛束主动和被动力学中的分子作用
- 批准号:
9315135 - 财政年份:2015
- 资助金额:
$ 44.48万 - 项目类别:
Molecular roles in active and passive mechanics in cochlear hair bundles
耳蜗毛束主动和被动力学中的分子作用
- 批准号:
8567348 - 财政年份:2013
- 资助金额:
$ 44.48万 - 项目类别:
Molecular roles in active and passive mechanics in cochlear hair bundles
耳蜗毛束主动和被动力学中的分子作用
- 批准号:
8688985 - 财政年份:2013
- 资助金额:
$ 44.48万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 44.48万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 44.48万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 44.48万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 44.48万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 44.48万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 44.48万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 44.48万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 44.48万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 44.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 44.48万 - 项目类别:
Standard Grant














{{item.name}}会员




