Leveraging Electronic Health Records and Genomic Biobanks for Kidney Stone Disease
利用电子健康记录和基因组生物库治疗肾结石疾病
基本信息
- 批准号:10395992
- 负责人:
- 金额:$ 21.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAlgorithmsAreaBioinformaticsClinicalClinical DataCollaborationsCoronary heart diseaseDNADataData SetDiabetes MellitusDiseaseDisease susceptibilityElectronic Health RecordEmergency department visitEventFutureGenetic VariationGenetic studyGenomic medicineGenomicsGenotypeGoalsGoldHypertensionInvestigationKidney CalculiLinkManualsMethodsMindNatural Language ProcessingObservational StudyOperative Surgical ProceduresOutcomePatient-Focused OutcomesPatientsPerformancePhenotypePrecision HealthRadiology SpecialtyRecurrenceReportingResearchResearch DesignResearch PersonnelRisk FactorsSample SizeSamplingScanningStandardizationStructureSymptomsTestingTextTimeTrainingVariantVisionWorkartificial neural networkbasebiobankcase controlclinical careclinical data repositoryclinical decision supportclinical decision-makingclinical practiceclinically relevantcomputerizedcost effectivedeep learningdeep learning algorithmdesigndisorder riskelectronic structuregenetic associationgenetic variantgenome wide association studygenomic toolsknowledgebaselearning strategymachine learning algorithmnovelphenotypic dataradiological imagingsecondary analysissupport toolstext searchingtooltreatment responseunstructured dataweb site
项目摘要
PROJECT SUMMARY
Kidney stones are highly prevalent and recurrent. Our current understanding of kidney stone disease risk factors
and disease associations has relied primarily on data from chart review, nonspecific administrative datasets, and
secondary analyses of observation studies. Current study designs suffer from small sample sizes, heterogenous
patient groups, and lack of standardized accuracy data and outcome definitions. The widespread adoption of
electronic health records (EHRs) provides novel research opportunities for kidney stone disease. EHRs contain
a robust clinical repository of data collected over time from clinical care. However, there are currently limited
tools to identify and characterize kidney stone patients in the EHR. The objective of this study is to establish
feasibility of utilizing EHR data to investigate kidney stone disease. To structure EHR data in an efficient and
cost-effective manner, natural language processing and deep learning methods can be designed for identifying
and phenotyping kidney stone patients and clinical outcomes. Our de-identified EHR is linked to a DNA biobank
that can enable investigation of genetic associations with disease. This project has two specific aims. In Aim 1,
we will perform genetic association studies in our EHR and linked DNA biobank. We will replicate previously
described associations with genetic variants and kidney stone disease. We will then perform a genome-wide
association study to discover novel associations. In Aim 2, our goal is to develop and validate a computable
framework to extract clinical outcomes of kidney stone disease from the EHR. Clinically meaningful outcomes
include symptomatic stone passage and radiographic stone characterization. We will develop and test natural
language processing and deep learning algorithms to extract keywords and context-based information in clinical
notes and reports. We will train and test these algorithms using manual annotation as the gold standard. This
aim will enable rigorous phenotyping of each kidney stone patient using structured and unstructured EHR data.
Successful completion of this project will lay the groundwork towards advancing genomic medicine and precision
health to support clinical decision-making in kidney stone patients.
项目概要
肾结石非常普遍且复发。我们目前对肾结石疾病危险因素的了解
和疾病协会主要依赖于图表审查、非特定管理数据集和
观察研究的二次分析。目前的研究设计存在样本量小、异质性等问题
患者群体,缺乏标准化的准确性数据和结果定义。广泛采用
电子健康记录(EHR)为肾结石疾病提供了新的研究机会。电子病历包含
随着时间的推移从临床护理中收集的数据的强大临床存储库。但目前数量有限
在 EHR 中识别和表征肾结石患者的工具。本研究的目的是建立
利用 EHR 数据研究肾结石疾病的可行性。以高效且有效的方式构建 EHR 数据
可以设计经济有效的方式,自然语言处理和深度学习方法来识别
以及肾结石患者的表型和临床结果。我们的去识别化 EHR 与 DNA 生物库相关联
这可以使研究与疾病的遗传关联成为可能。该项目有两个具体目标。在目标 1 中,
我们将在我们的 EHR 和关联 DNA 生物库中进行遗传关联研究。我们将复制之前的内容
描述了与遗传变异和肾结石疾病的关联。然后我们将进行全基因组研究
关联研究以发现新的关联。在目标 2 中,我们的目标是开发和验证可计算的
从 EHR 中提取肾结石疾病临床结果的框架。具有临床意义的结果
包括有症状的结石通道和放射学结石特征。我们将开发和测试天然
语言处理和深度学习算法,用于提取临床中的关键词和基于上下文的信息
笔记和报告。我们将使用手动注释作为黄金标准来训练和测试这些算法。这
目标将利用结构化和非结构化 EHR 数据对每位肾结石患者进行严格的表型分析。
该项目的成功完成将为推进基因组医学和精准化奠定基础
健康支持肾结石患者的临床决策。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mendelian Randomization Analysis of Genetic Proxies of Thiazide Diuretics and the Reduction of Kidney Stone Risk.
- DOI:10.1001/jamanetworkopen.2023.43290
- 发表时间:2023-11-01
- 期刊:
- 影响因子:13.8
- 作者:Triozzi, Jefferson L.;Hsi, Ryan S.;Wang, Guanchao;Akwo, Elvis A.;Wheless, Lee;Chen, Hua-Chang;Tao, Ran;Ikizler, T. Alp;Robinson-Cohen, Cassianne;Hung, Adriana M.
- 通讯作者:Hung, Adriana M.
Evaluation of genetic associations with clinical phenotypes of kidney stone disease.
评估遗传与肾结石疾病临床表型的关联。
- DOI:10.1101/2024.01.18.24301501
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Hsi,RyanS;Zhang,Siwei;Triozzi,JeffersonL;Hung,AdrianaM;Xu,Yaomin;Bejan,CosminA
- 通讯作者:Bejan,CosminA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cosmin Adrian Bejan其他文献
Cosmin Adrian Bejan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cosmin Adrian Bejan', 18)}}的其他基金
Leveraging artificial intelligence methods and electronic health records for pediatric pharmacovigilance
利用人工智能方法和电子健康记录进行儿科药物警戒
- 批准号:
10750074 - 财政年份:2023
- 资助金额:
$ 21.63万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 21.63万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 21.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 21.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 21.63万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 21.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 21.63万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 21.63万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 21.63万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 21.63万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 21.63万 - 项目类别:
Standard Grant