Molecular Mechanisms and Regulation Networks of TRPM8
TRPM8的分子机制和调控网络
基本信息
- 批准号:10396096
- 负责人:
- 金额:$ 37.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:Biological ProcessBiophysicsCellsChemicalsComplementComplexComputational TechniqueDataDevelopmentDiseaseDrug TargetingElectrophysiology (science)ExplosionFutureGenus MenthaGoalsHealthHornsHumanIon ChannelIon Channel ProteinLaboratoriesLegal patentLinkMapsMembrane ProteinsMentholModernizationMolecularObesityOncogenesOutcomeOutcomes ResearchOutputPainPhysiologyPropertyProteinsPublicationsRegulationResearchSignal TransductionStimulusStructureTRP channelTechniquesTherapeutic Interventionbasecancer typecold temperaturedrug discoveryinsightinterdisciplinary approachpatch clampprognosticprotein complexprotein functionresearch visionsensorstoichiometrystructural biologytherapeutic targettumor progression
项目摘要
Project Summary/Abstract
Overview of Research: The Van Horn lab primarily focuses on elucidating and understanding the molecular
mechanisms that underlie membrane protein function in health and disease. To achieve these goals, the
laboratory employs a modern state-of-the-art and interdisciplinary approach using biophysical, structural,
computational, and functional techniques. We are experts in membrane protein biophysics and make use of
advanced NMR studies combined with functional whole-cell patch-clamp electrophysiology. These orthogonal
data are linked with Rosetta-based computational techniques to understand protein function. Our primary target
is the TRPM8 ion channel which was initially identified as an oncogene that is prognostic for some types of
cancer progression. More recently, it has become a focus for therapeutic intervention in pain and obesity.
Complicating the potential application of TRPM8 therapies is that it is a molecular integrator that is activated by
a number of diverse stimuli. For example, TRPM8 is the primary human cold sensor but is also activated by the
chemical menthol from mint, both of which activate TRPM8 signaling networks. The ability to respond to several
different stimuli in a polymodal manner makes TRPM8 studies crucial to delineate the independence and
interdependence of molecular mechanisms that result in biological function and complicate its therapeutic
targeting. In addition to direct stimulation by cold and menthol, TRPM8 is regulated by diverse proteins, including
the membrane protein, PIRT, which in turn modulates TRPM8 activation by cold, menthol, and other stimuli.
Beyond our research on direct activation of TRPM8 by cold and menthol, we focus on determining the
mechanisms whereby PIRT modulates TRPM8 function. This has led to a number of contributions from our lab
including, biophysical and structural characterization of TRPM8 and PIRT, TRPM8–PIRT complex stoichiometry,
identification of species-dependent regulation, and central insight into molecular regulatory mechanisms. These
efforts have led to strong scientific output, including publications, seminars, and patents.
Five-year Goals: Broadly defined, we will identify how TRPM8 is directly activated by cold temperatures and
other stimuli, map the allosteric networks that allow for polymodal function, and determine structures of TRPM8
and related membrane protein complexes of functional consequence.
Research Vision: In the past 8 years, there has been an explosion of TRP channel structural biology with now
~100 discrete TRP channel structures. This represents tremendous development and output. Our research
seeks to extend and complement the structural momentum to delineate fundamental mechanistic properties such
as allostery, dynamics, and protein complex regulation that determines function. These TRPM8 outcomes are
anticipated to have direct impacts on human health and disease but also to serve as a template that defines and
identifies fundamental rules and properties of membrane protein function.
项目总结/摘要
研究概述:范霍恩实验室主要致力于阐明和理解
在健康和疾病中膜蛋白功能的基础机制。要实现这些目标,
实验室采用了现代国家的最先进的和跨学科的方法,利用生物物理,结构,
计算和功能技术。我们是膜蛋白生物物理学的专家,
先进的核磁共振研究结合功能性全细胞膜片钳电生理学。这些正交
数据与基于Rosetta的计算技术相关联,以了解蛋白质功能。我们的首要目标
是TRPM 8离子通道,最初被鉴定为一种致癌基因,对某些类型的肿瘤有预后作用。
癌症进展最近,它已成为疼痛和肥胖症治疗干预的焦点。
使TRPM 8疗法的潜在应用复杂化的是,它是一种分子整合剂,其被以下物质激活:
各种各样的刺激。例如,TRPM 8是主要的人体冷传感器,但也由温度传感器激活。
薄荷中的化学薄荷醇,两者都能激活TRPM 8信号网络。能够应对多个
不同的刺激以多模态的方式使TRPM 8研究至关重要,以描绘独立性,
导致生物学功能并使其治疗复杂化分子机制的相互依赖性
面向.除了受到冷和薄荷醇的直接刺激外,TRPM 8还受到多种蛋白质的调节,包括
膜蛋白,PIRT,反过来调节TRPM 8激活冷,薄荷醇,和其他刺激。
除了我们对TRPM 8被冷和薄荷醇直接激活的研究之外,我们还专注于确定TRPM 8的激活机制。
PIRT调节TRPM 8功能的机制。这使得我们的实验室做出了许多贡献,
包括TRPM 8和PIRT的生物物理和结构表征,TRPM 8-PIRT复合物化学计量,
物种依赖性调控的鉴定,以及对分子调控机制的核心见解。这些
这些努力带来了大量的科学产出,包括出版物、研讨会和专利。
五年目标:从广义上讲,我们将确定TRPM 8如何被低温直接激活,
其他刺激,映射允许多模态功能的变构网络,并确定TRPM 8的结构
以及功能性后果的相关膜蛋白复合物。
研究展望:在过去的8年里,TRP通道结构生物学已经爆炸,现在
~100个离散TRP通道结构。这代表着巨大的发展和产出。我们的研究
寻求扩展和补充结构动力,以描绘基本的机械属性,
变构、动力学和决定功能的蛋白质复合物调节。TRPM 8的这些成果是
预计对人类健康和疾病有直接影响,但也作为一个模板,
识别膜蛋白功能的基本规则和特性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wade D. Van Horn其他文献
Mechanistic and Structural Studies of PIRT Regulation of TRPM8
- DOI:
10.1016/j.bpj.2019.11.2338 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Wade D. Van Horn;Dustin D. Luu;Minjoo Kim;Jacob K. Hilton;Camila Montano - 通讯作者:
Camila Montano
Delivery of nonbiologically-compatible membrane protein constructs to mammalian cells for functional characterization
- DOI:
10.1016/j.bpj.2022.11.1913 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Wade D. Van Horn;Helen F. Mann;Karan H. Shah;Dustin D. Luu;Aerial M. Pratt;Cade F. Bennett;Katherine R. Clowes;Charles R. Sanders - 通讯作者:
Charles R. Sanders
VKORC1 ER mislocalization causes rare disease.
VKORC1 ER 错误定位会导致罕见疾病。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:20.3
- 作者:
Wade D. Van Horn - 通讯作者:
Wade D. Van Horn
Characterization of HTRPM8 Conformational Dynamic Utilizing Solution NMR
- DOI:
10.1016/j.bpj.2019.11.2336 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Mubark Mebrat;Jacob K. Hilton;Danielle Morelan;Wade D. Van Horn - 通讯作者:
Wade D. Van Horn
Wade D. Van Horn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wade D. Van Horn', 18)}}的其他基金
Understanding human TRPV1 polymodal activation
了解人类 TRPV1 多模式激活
- 批准号:
10634726 - 财政年份:2022
- 资助金额:
$ 37.68万 - 项目类别:
Understanding human TRPV1 polymodal activation
了解人类 TRPV1 多模式激活
- 批准号:
10521997 - 财政年份:2022
- 资助金额:
$ 37.68万 - 项目类别:
Molecular Mechanisms and Regulation Networks of TRPM8
TRPM8的分子机制和调控网络
- 批准号:
10795242 - 财政年份:2021
- 资助金额:
$ 37.68万 - 项目类别:
Molecular Mechanisms and Regulation Networks of TRPM8
TRPM8的分子机制和调控网络
- 批准号:
10206573 - 财政年份:2021
- 资助金额:
$ 37.68万 - 项目类别:
Molecular Mechanisms and Regulation Networks of TRPM8
TRPM8的分子机制和调控网络
- 批准号:
10569021 - 财政年份:2021
- 资助金额:
$ 37.68万 - 项目类别:
相似海外基金
Biophysics of Branched Cells: Intracellular Transport, Scaling Laws and The Supply of Metabolic Demand
分支细胞的生物物理学:细胞内运输、缩放定律和代谢需求的供应
- 批准号:
2210464 - 财政年份:2022
- 资助金额:
$ 37.68万 - 项目类别:
Continuing Grant
Systems Biophysics of Multiscale State Transitions in Cells and Tissues
细胞和组织多尺度状态转变的系统生物物理学
- 批准号:
10461196 - 财政年份:2021
- 资助金额:
$ 37.68万 - 项目类别:
Systems Biophysics of Multiscale State Transitions in Cells and Tissues
细胞和组织多尺度状态转变的系统生物物理学
- 批准号:
10798506 - 财政年份:2021
- 资助金额:
$ 37.68万 - 项目类别:
Systems Biophysics of Multiscale State Transitions in Cells and Tissues
细胞和组织多尺度状态转变的系统生物物理学
- 批准号:
10275855 - 财政年份:2021
- 资助金额:
$ 37.68万 - 项目类别:
Systems Biophysics of Multiscale State Transitions in Cells and Tissues
细胞和组织多尺度状态转变的系统生物物理学
- 批准号:
10631113 - 财政年份:2021
- 资助金额:
$ 37.68万 - 项目类别:
Development of safe CAR-T cells based on logical molecular design of biophysics
基于生物物理学逻辑分子设计开发安全CAR-T细胞
- 批准号:
20H03639 - 财政年份:2020
- 资助金额:
$ 37.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Metastasis and biophysics of clusters of circulating tumor cells in the microcirculation
微循环中循环肿瘤细胞簇的转移和生物物理学
- 批准号:
9924267 - 财政年份:2018
- 资助金额:
$ 37.68万 - 项目类别:
Metastasis and biophysics of clusters of circulating tumor cells in the microcirculation
微循环中循环肿瘤细胞簇的转移和生物物理学
- 批准号:
10429911 - 财政年份:2018
- 资助金额:
$ 37.68万 - 项目类别:
Metastasis and biophysics of clusters of circulating tumor cells in the microcirculation
微循环中循环肿瘤细胞簇的转移和生物物理学
- 批准号:
10152522 - 财政年份:2018
- 资助金额:
$ 37.68万 - 项目类别:
Investigating the Biophysics of Giant Polyploidal Cancer Cells in an Aging Tumor Stroma
研究老化肿瘤基质中巨型多倍体癌细胞的生物物理学
- 批准号:
1825174 - 财政年份:2018
- 资助金额:
$ 37.68万 - 项目类别:
Standard Grant