PIRT Family Modulation of TRPM8
TRPM8 的 PIRT 系列调制
基本信息
- 批准号:8962682
- 负责人:
- 金额:$ 29.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAttenuatedBindingBinding SitesBiochemicalBiochemistryChemicalsChimera organismChronic Cancer PainClinical TrialsCollectionComplexComputer SimulationCryoelectron MicroscopyDataDiseaseDockingDrug TargetingElectrophysiology (science)EnvironmentEsthesiaEvaluationFamilyFeedbackGap JunctionsHealthHumanInterventionIon ChannelIon Channel ProteinLigandsLipid BindingMedicalMembraneMembrane ProteinsMigraineModelingMotivationNMR SpectroscopyNatureNeuropathyObesityOncogenesOutcomeOutputPainPathway interactionsPeripheral Nervous SystemPharmacologic SubstancePhasePhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhysiologyProcessProtein RegionProteinsPublishingRegulationResolutionSideSignal TransductionSolutionsStagingStimulusStructural ModelsStructureTRP channelTRPV1 geneTechniquesTemperatureTestingTherapeuticThermogenesisTimeVertebral columnbasecancer therapycancer typechronic paincomparativedesignflexibilityinsightmodel developmentmutantnovel therapeuticspre-clinicalprotein complexprotein structurepublic health relevanceresearch studyresponserestraintsensorstoichiometrystructural biologysulfated glycoprotein 2tumor progressionvoltage
项目摘要
DESCRIPTION (provided by applicant): The long-term objective of this proposal is to understand how TRPM8 is modulated by PIRT. The motivation for this proposal is the significant health relevance associated with regulating TRPM8 signaling cascades. TRPM8 is an ion channel that functions as the primary cold sensor in humans. This channel was initially found to be an oncogene that is upregulated in a number of types of cancer and is currently under evaluation as a target of anti-cancer therapy. More recently, TRPM8 has been identified as an attractive target for pharmacological intervention of obesity and chronic pain. It was recently shown that PIRT, a small membrane protein with two transmembrane helices, directly interacts withTRPM8 and alters the response to diverse stimuli. The mechanism of modulation is not currently understood and there is no structural information regarding this complex. In this proposal we will use nuclear magnetic resonance spectroscopy (NMR), electrophysiology, biochemistry, and computational structural biology to generate an experimentally restrained integrative structural model of the TRPM8-PIRT membrane protein complex. Aim 1 will isolate and characterize the regions of the proteins that are required for complex formation using a mix of electrophysiology, NMR binding, and biochemistry studies. This aim will also, for the first time, probe the TRPM8-PIRT complex stoichiometry and identify the PIRT lipid binding site for phosphoinositides. Aim 2 will produce the first structure of the human membrane protein PIRT, a comparative TRPM8 model, and an experimentally restrained integrative structural model of the TRPM8-PIRT complex. Aims 1 and 2 are independent yet cooperative in nature: the results from Aim 1 can be used to guide the integrative structural biology in Aim 2 and the output from Aim 2 can be used to generate hypotheses and instruct the isolation of the complex functional determinants. We have generated significant preliminary electrophysiology, NMR, and computational data that suggest these aims are feasible during the timeframe of this proposal. For Aim 1, both NMR and electrophysiology data that suggest the TRPM8 voltage-sensing domain is key to PIRT modulation and we have isolated specific residues in TRPM8 that are key to functional modulation. Preliminary data for Aim 2 suggest that NMR structural studies of PIRT will result in the first structure of this protein. The proposed structural and functional analysisof PIRT modulation of TRPM8 will increase our understanding of how to regulate this channel. Moreover, understanding the structure and function of PIRT may provide an alternative therapeutic pathway to modulate TRP channel function with potentially fewer off target effects.
描述(由申请人提供):本提案的长期目标是了解TRPM 8如何通过PIRT进行调节。该提议的动机是与调节TRPM 8信号级联相关的显著健康相关性。TRPM 8是一种离子通道,在人体中充当主要的冷传感器。该通道最初被发现是一种致癌基因,在许多类型的癌症中上调,目前正在评估作为抗癌治疗的靶点。最近,TRPM 8已被确定为肥胖和慢性疼痛的药理学干预的有吸引力的靶标。最近的研究表明,PIRT是一种具有两个跨膜螺旋的小膜蛋白,它直接与TRPM 8相互作用,并改变对各种刺激的反应。调制的机制目前还不清楚,也没有关于这个复杂的结构信息。在这个建议中,我们将使用核磁共振光谱(NMR),电生理学,生物化学和计算结构生物学,以产生一个实验限制的TRPM 8-PIRT膜蛋白复合物的综合结构模型。目标1将分离和表征的区域的蛋白质,所需的复合物的形成,使用电生理学,核磁共振结合,和生物化学研究的混合。这一目标也将首次探测TRPM 8-PIRT复合物的化学计量,并确定磷酸肌醇的PIRT脂质结合位点。目的2将产生人膜蛋白PIRT的第一个结构,比较TRPM 8模型,以及TRPM 8-PIRT复合物的实验限制的整合结构模型。目标1和目标2在本质上是独立的,但又是合作的:目标1的结果可用于指导目标2中的综合结构生物学,目标2的输出可用于生成假设并指导复杂功能决定簇的分离。我们已经产生了重要的初步电生理学,核磁共振和计算数据,表明这些目标是可行的,在这个建议的时间范围内。对于目标1,NMR和电生理学数据表明TRPM 8电压敏感结构域是PIRT调节的关键,并且我们已经分离出TRPM 8中对功能调节至关重要的特定残基。目标2的初步数据表明,PIRT的NMR结构研究将导致这种蛋白质的第一个结构。对TRPM 8的PIRT调节的结构和功能分析将增加我们对如何调节该通道的理解。此外,了解PIRT的结构和功能可以提供一种替代的治疗途径来调节TRP通道功能,具有潜在的更少的脱靶效应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wade D. Van Horn其他文献
Mechanistic and Structural Studies of PIRT Regulation of TRPM8
- DOI:
10.1016/j.bpj.2019.11.2338 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Wade D. Van Horn;Dustin D. Luu;Minjoo Kim;Jacob K. Hilton;Camila Montano - 通讯作者:
Camila Montano
Delivery of nonbiologically-compatible membrane protein constructs to mammalian cells for functional characterization
- DOI:
10.1016/j.bpj.2022.11.1913 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Wade D. Van Horn;Helen F. Mann;Karan H. Shah;Dustin D. Luu;Aerial M. Pratt;Cade F. Bennett;Katherine R. Clowes;Charles R. Sanders - 通讯作者:
Charles R. Sanders
VKORC1 ER mislocalization causes rare disease.
VKORC1 ER 错误定位会导致罕见疾病。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:20.3
- 作者:
Wade D. Van Horn - 通讯作者:
Wade D. Van Horn
Characterization of HTRPM8 Conformational Dynamic Utilizing Solution NMR
- DOI:
10.1016/j.bpj.2019.11.2336 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Mubark Mebrat;Jacob K. Hilton;Danielle Morelan;Wade D. Van Horn - 通讯作者:
Wade D. Van Horn
Wade D. Van Horn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wade D. Van Horn', 18)}}的其他基金
Understanding human TRPV1 polymodal activation
了解人类 TRPV1 多模式激活
- 批准号:
10521997 - 财政年份:2022
- 资助金额:
$ 29.11万 - 项目类别:
Understanding human TRPV1 polymodal activation
了解人类 TRPV1 多模式激活
- 批准号:
10634726 - 财政年份:2022
- 资助金额:
$ 29.11万 - 项目类别:
Molecular Mechanisms and Regulation Networks of TRPM8
TRPM8的分子机制和调控网络
- 批准号:
10396096 - 财政年份:2021
- 资助金额:
$ 29.11万 - 项目类别:
Molecular Mechanisms and Regulation Networks of TRPM8
TRPM8的分子机制和调控网络
- 批准号:
10795242 - 财政年份:2021
- 资助金额:
$ 29.11万 - 项目类别:
Molecular Mechanisms and Regulation Networks of TRPM8
TRPM8的分子机制和调控网络
- 批准号:
10206573 - 财政年份:2021
- 资助金额:
$ 29.11万 - 项目类别:
Molecular Mechanisms and Regulation Networks of TRPM8
TRPM8的分子机制和调控网络
- 批准号:
10569021 - 财政年份:2021
- 资助金额:
$ 29.11万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 29.11万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 29.11万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 29.11万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 29.11万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 29.11万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 29.11万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 29.11万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 29.11万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 29.11万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 29.11万 - 项目类别:
Continuing Grant














{{item.name}}会员




