Film-like Acoustic Microresonators for Wireless Monitoring of Intracardiac Pressure using Ultrasound
使用超声波无线监测心内压的薄膜式声学微谐振器
基本信息
- 批准号:10396479
- 负责人:
- 金额:$ 18.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAffectAmericanAtrial Heart Septal DefectsAttenuatedChronicCommunicationCongestiveDetectionDevicesEchocardiographyElectromagnetic EnergyElectromagneticsElectronicsEngineeringEquipment MalfunctionEventEvolutionFilmFrequenciesFutureGasesGeometryHealthcare SystemsHeart AtriumHeart failureHospital CostsHospitalizationHuman bodyHydrocephalusImaging DeviceImplantIn VitroIntracranial PressureLeftLeft atrial structureLifeLiquid substanceMaterials TestingMeasurementMedicalMedical ImagingMicrobubblesMiniaturizationMonitorOrganPatientsPeriodicityPhysiciansPhysiologic MonitoringPhysiologicalPolymersProceduresProtocols documentationPulmonary artery structureResearchResolutionRight ventricular structureRiskRouteSafetySemiconductorsSideSignal TransductionSystemTechnologyTecoflexTestingTextilesThickThrombosisTimeTissuesTravelUltrasonic TransducerUltrasonic waveUltrasonicsVentricularWaterWireless Technologyattenuationbasedacrondesignflexibilityheart motionhemocompatibilityhemodynamicshigh riskimplantable deviceimplanted sensorin vivoin vivo evaluationinnovationintracardiac pressuremedical attentionminiaturizeminimally invasivenext generationnitinolnovelpolydimethylsiloxanepressurepreventradio frequencyremote monitoringsensorsimulationtemporal measurementtooltransmission processultrasoundwater vaporwireless communicationwireless fidelitywireless implantwireless sensor
项目摘要
Abstract
While wireless monitoring of intracardiac pressure using implants is essential for the management of heart
failure, miniaturizing these implants is critical for reducing their associated complications. Current implants mainly
consist of an electromagnetic antenna, electronics, and energy-storage and conversion units. However, these
units contain toxic materials, and a large antenna is necessary to transmit the large wavelengths (>5 cm) of
electromagnetic waves. The size and inorganic components of the current implants increase the risk of
complications for patients.
Ultrasound technology is promising to replace electromagnetic waves for in vivo wireless communications. It is
safe, does not interfere with other electromagnetic signals, has lower in vivo signal attenuation, and permits the
use of significantly smaller antennas and implants due to its sub-millimeter wavelength. Therefore,
communication through ultrasound is ideal for use in minimally invasive pressure monitoring implants. The long-
term objective is to develop an ultrasound-based, wireless technology that will miniaturize intracardiac implants
by eliminating both the electromagnetic antenna and the energy storage and conversion units. The objective of
this project is to utilize flexible, acoustic microresonators (100 to 500 µm thick films) with compressible
microcavities for physiological pressure measurements of atriums and ventricles.
Our central hypothesis is that the post-processing of echo signals from the resonators and their resonant
frequencies can detect intracardiac pressure changes. Our rationale is that micro-fabricated films made from
polydimethylsiloxane (PDMS) form acoustic resonators. Incorporating gas/void filled microcavities into the PDMS
film creates a resonator that is sensitive to the pressure difference between the inside and outside. Changing
the differential pressure causes deformations of the resonator. These deformations shift the film's resonant
frequency allowing for the detection of pressure changes.
Our specific aims are to 1) prove the measurement sensitivity of the resonator underwater at the ventricular and
atrial physiological pressures with the resolution of ~1mmHg and temporal resolution of 40 (ms); 2) demonstrate
the safety of an implantable device in vitro by incorporating hemocompatible materials, testing a device's
durability, and testing in a specially designed phantom; and 3) prove that the implant is suitable for a minimally
invasive delivery (transseptal procedure) on a benchtop test setup. Upon project completion, the technology can
be immediately employed to create safer next-generation in vivo pressure monitoring implants that operate solely
using acoustic waves. This contribution is significant because it can aid over 6 million Americans who live with
Heart Failure (HF), resulting in chronic hospitalizations that cost $16 billion. The proposed research is innovative
because this technology employs only acoustic waves; avoids energy conversion, storage units, and
electromagnetic antennas; and significantly reduces an implant's size and complications.
抽象的
虽然无线监测对心脏的心脏压力对于管理心脏是必不可少的
失败,将这些牙齿化的小型化对于减少其相关并发症至关重要。当前的诱因主要是
由电子天线,电子设备以及能量存储和转换单元组成。但是,这些
单位包含有毒物质,并且需要一个大天线来传输大波长(> 5 cm)
电磁波。当前实施的大小和无机组件增加了
患者的并发症。
超声技术有望替换电磁波用于体内无线通信。这是
安全,不会干扰其他电子信号,体内信号衰减较低,并允许使用
由于其亚毫米级波长,使用明显较小的天线和即将。所以,
通过超声通信非常适合用于微创压力监测的直接。长期
术语目标是开发一种基于超声的无线技术,该技术将使心脏内植入术微型化
通过消除电子天线和能量存储和转换单元。目的
该项目是利用可压缩的灵活的声学微孔子(100至500 µm厚的膜)
中庭和心室的物理压力测量的微腔。
我们的中心假设是,谐振器及其共振的回声信号的后处理
频率可以检测到心脏内压的变化。我们的理由是由
聚二甲基硅氧烷(PDMS)形成声学谐振器。将气体/空隙填充的微腔纳入PDM
电影创建了一个对内部和外部之间的压力差敏感的谐振器。更改
差异导致谐振器的变形。这些变形改变了电影的共鸣
允许检测压力变化的频率。
我们的具体目的是1)证明心室下水下谐振器的测量敏感性和
〜1mmHg分辨率和40(ms)的暂时分辨率的心房生理压力; 2)演示
通过掺入血液相容的材料,测试设备的植入设备在体外的安全性
耐用性,并在专门设计的幻影中进行测试; 3)证明该植入物适合最小
台式测试设置上的侵入性交付(转换过程)。项目完成后,技术可以
立即被雇用以创建一个仅操作的体内压力监测的下一代
使用声波。这项贡献很重要,因为它可以帮助超过600万与与之相处的美国人
心力衰竭(HF),导致长期住院费用为160亿美元。拟议的研究是创新的
因为这项技术员工只有声波;避免能源转换,存储单元和
电子天线;并大大降低了植入物的大小和并发症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seyedhamidreza Alaie其他文献
Seyedhamidreza Alaie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Effect of vocal fold injury on laryngeal muscle dysfunction
声带损伤对喉肌功能障碍的影响
- 批准号:
10736684 - 财政年份:2023
- 资助金额:
$ 18.97万 - 项目类别:
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
- 批准号:
10649994 - 财政年份:2023
- 资助金额:
$ 18.97万 - 项目类别:
Determining reliability and efficacy of intraoperative sensors to reduce structural damage during cochlear implantation
确定术中传感器的可靠性和有效性,以减少人工耳蜗植入期间的结构损伤
- 批准号:
10760827 - 财政年份:2023
- 资助金额:
$ 18.97万 - 项目类别:
An automated machine learning approach to language changes in Alzheimer’s disease and frontotemporal dementia across Latino and English-speaking populations
一种针对拉丁裔和英语人群中阿尔茨海默病和额颞叶痴呆的语言变化的自动化机器学习方法
- 批准号:
10662053 - 财政年份:2023
- 资助金额:
$ 18.97万 - 项目类别:
Assessment of Cochlear Dysfunction in Black and White Adults with Stage 2 Hypertension Using High-Frequency Distortion Product Otoacoustic Emissions
使用高频失真产物耳声发射评估患有 2 期高血压的黑人和白人成人的耳蜗功能
- 批准号:
10652892 - 财政年份:2023
- 资助金额:
$ 18.97万 - 项目类别: