Understanding breast cancer progression as a defect in the mechanics of tissue self-organization
将乳腺癌进展理解为组织自组织机制的缺陷
基本信息
- 批准号:10395995
- 负责人:
- 金额:$ 56.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AKT inhibitionAdhesionsArchitectureBasement membraneBinding SitesBioinformaticsBiological AssayBreastBreast Cancer CellBreast Cancer PreventionBreast Epithelial CellsCell Adhesion MoleculesCell LineageCellsChemicalsClinicalComplexDangerousnessDefectDiseaseDisease MarkerDisease ProgressionDrug TargetingDuct (organ) structureEntropyEpithelialEpithelial CellsExtracellular MatrixExtracellular Matrix ProteinsGenesGeneticGenetic TranscriptionGenetically Engineered MouseGoalsHumanImageIn SituIn VitroInvadedLeadLobuleMalignant NeoplasmsMammaplastyMammary Gland ParenchymaMammary glandMass Spectrum AnalysisMeasurementMeasuresMechanicsMediatingMolecularMutationMyoepithelialNoninfiltrating Intraductal CarcinomaOperative Surgical ProceduresOrganoidsPIK3CA genePathway interactionsPatientsPenetrationPeptide HydrolasesPhenotypePolycombPositioning AttributeProbabilityProliferatingPropertyPublishingRiskSignal TransductionStatistical MechanicsStructureSystemTemperatureTestingTherapeuticTimeTissue EngineeringTissue ModelTissuesWestern BlottingWomanbreast cancer progressioncell motilitycell typecellular engineeringdrug developmentexperimental studyin vivoinfiltrating duct carcinomainhibitorinnovationinterfaciallensmalignant breast neoplasmmammary epitheliummathematical modelmechanical energymouse modelneoplastic cellovertreatmentpredictive modelingpreventprogramsreconstitutionself organizationsingle-cell RNA sequencingsmall hairpin RNAthree dimensional cell culturetumortumor progression
项目摘要
ABSTRACT
A progressive breakdown in the bilayered structure of the mammary gland is the hallmark of all breast cancers,
but the structural change that occurs between ductal carcinoma in situ (DCIS) and invasive ductal carcinoma
(IDC) is of particular importance because it represents a major inflection point in risk for patients. Breast cancers
originate in the inner luminal layer of the mammary epithelium, where transformed luminal epithelial cells (LEP)
proliferate to fill the ducts and lobules in DCIS. Surprisingly, LEP in DCIS have acquired all the necessary
genetic aberrations to invade, but remain constrained within the tissue by an intact outer myoepithelial (MEP)
layer—a group of cells that forms a dynamic barrier blocking access of the in situ tumor to the basement
membrane (BM, the specialized extracellular matrix (ECM) that surrounds the mammary epithelium). Thus, we
propose that translocation of transformed LEP past the MEP layer, and not genetic mutations, is a key rate-
limiting step in progression to IDC. Here, we aim to identify the physical and molecular changes that must occur
in LEP to facilitate this structural transition. We approach this challenge through the lens of mammary epithelial
self-organization. We previously demonstrated that normal human LEP and MEP can self-organize in vitro, and
that the capacity of MEP to exclude LEP from the BM is determined by hard-wired and lineage-specific interfacial
tensions at each cell-cell and cell-ECM interface. We showed using experiments and mathematical modeling
that the LEP-ECM interface is highly unfavorable energetically compared to the MEP-ECM interface, which
prevents LEP from positioning themselves next to the BM. We hypothesize the existence of a rate-limiting and
high-energy structural intermediate during the progression of DCIS to IDC, where LEP translocate into the MEP
layer, next to the BM. We propose a statistical mechanical framework for understanding how perturbations to
the interfacial properties and dynamics of tumor cells facilitate the formation of this intermediate. Specifically, we
predict that changes to the LEP-ECM interfacial energy are a critical physical change necessary to promote
basal translocation of transformed LEP. Preliminary studies support this hypothesis: we found that a frequently
dysregulated gene—PIK3CA—disrupts self-organization when activated in LEP by rendering the LEP-ECM
interface more energetically favorable. In this proposal, we will determine whether this and other physical
changes to LEP are necessary for their basal translocation, and identify the molecular changes downstream of
PIK3CA that give rise to these physical changes. We will test our hypothesis using complementary in vitro and
in vivo experimental systems: using organoids reconstituted from human reduction mammoplasty tissues and
genetically engineered mouse models. Our long-term goal is to reveal the changes that promote and inhibit
progression from DCIS to IDC. Better physical and molecular predictors of progression would benefit DCIS
patients who would otherwise be over-treated, as only a third of DCIS cases progress to IDC. Further, blocking
LEP translocation would represent a therapeutic strategy to prevent breast cancer progression.
抽象的
乳腺双层结构的进行性破坏是所有乳腺癌的标志,
但导管原位癌 (DCIS) 和浸润性导管癌之间发生的结构变化
(IDC) 特别重要,因为它代表了患者风险的主要拐点。乳腺癌
起源于乳腺上皮的内腔层,其中转化的腔上皮细胞(LEP)
增殖以填充导管原位癌 (DCIS) 中的导管和小叶。令人惊讶的是,DCIS 中的 LEP 已获得所有必要的条件
遗传畸变侵入,但仍被完整的外肌上皮 (MEP) 限制在组织内
层——形成动态屏障的一组细胞,阻止原位肿瘤进入基底
膜(BM,包围乳腺上皮的特殊细胞外基质(ECM))。因此,我们
提出转化的 LEP 通过 MEP 层的易位,而不是基因突变,是关键的速率-
限制进展为 IDC 的步骤。在这里,我们的目标是确定必须发生的物理和分子变化
LEP 来促进这种结构转型。我们通过乳腺上皮透镜来应对这一挑战
自组织。我们之前证明正常人类 LEP 和 MEP 可以在体外自组织,并且
MEP 将 LEP 从 BM 中排除的能力是由硬连线和谱系特定的界面决定的
每个细胞-细胞和细胞-ECM 界面处的张力。我们通过实验和数学建模来展示
与 MEP-ECM 接口相比,LEP-ECM 接口在能量上非常不利,
防止 LEP 将自己定位在 BM 旁边。我们假设存在速率限制和
DCIS 发展为 IDC 过程中的高能结构中间体,其中 LEP 易位至 MEP
层,紧邻BM。我们提出了一个统计力学框架来理解扰动如何
肿瘤细胞的界面特性和动力学促进了这种中间体的形成。具体来说,我们
预测 LEP-ECM 界面能的变化是促进
转化的 LEP 的基础易位。初步研究支持了这一假设:我们发现,经常
失调基因 PIK3CA 在 LEP 中激活时会通过渲染 LEP-ECM 来破坏自组织
界面更加积极有利。在这个提案中,我们将确定这个和其他物理
LEP 的变化对于其基础易位是必要的,并确定 LEP 下游的分子变化
PIK3CA 引起这些物理变化。我们将使用互补的体外和
体内实验系统:使用从人体缩小乳房成形术组织中重建的类器官和
基因工程小鼠模型。我们的长期目标是揭示促进和抑制的变化
从 DCIS 进展为 IDC。更好的物理和分子进展预测因素将有利于 DCIS
患者可能会被过度治疗,因为只有三分之一的 DCIS 病例会进展为 IDC。进一步地,阻止
LEP 易位代表了一种预防乳腺癌进展的治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREI GOGA其他文献
ANDREI GOGA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREI GOGA', 18)}}的其他基金
Understanding CDK1 Function and Cancer Vulnerabilities
了解 CDK1 功能和癌症脆弱性
- 批准号:
10736617 - 财政年份:2023
- 资助金额:
$ 56.62万 - 项目类别:
Understanding breast cancer progression as a defect in the mechanics of tissue self-organization
将乳腺癌进展理解为组织自组织机制的缺陷
- 批准号:
10613917 - 财政年份:2020
- 资助金额:
$ 56.62万 - 项目类别:
Uncovering Mechanisms of Regulation and Dependency on Fatty Acid Oxidation in MYC-Driven Tumors
揭示 MYC 驱动肿瘤中脂肪酸氧化的调节和依赖性机制
- 批准号:
10194413 - 财政年份:2018
- 资助金额:
$ 56.62万 - 项目类别:
Uncovering Mechanisms of Regulation and Dependency on Fatty Acid Oxidation in MYC-Driven Tumors
揭示 MYC 驱动肿瘤中脂肪酸氧化的调节和依赖性机制
- 批准号:
10436804 - 财政年份:2018
- 资助金额:
$ 56.62万 - 项目类别:
In Vivo Metabolic Catastrophe Is Induced By Acute Oncogene Inhibition (PQ #22)
体内代谢灾难是由急性癌基因抑制(PQ
- 批准号:
8676483 - 财政年份:2012
- 资助金额:
$ 56.62万 - 项目类别:
In Vivo Metabolic Catastrophe Is Induced By Acute Oncogene Inhibition (PQ #22)
体内代谢灾难是由急性癌基因抑制(PQ
- 批准号:
8384577 - 财政年份:2012
- 资助金额:
$ 56.62万 - 项目类别:
In Vivo Metabolic Catastrophe Is Induced By Acute Oncogene Inhibition (PQ #22)
体内代谢灾难是由急性癌基因抑制(PQ
- 批准号:
8513950 - 财政年份:2012
- 资助金额:
$ 56.62万 - 项目类别:
Targeting the MYC Oncogene with CDK Inhibitors
使用 CDK 抑制剂靶向 MYC 癌基因
- 批准号:
8641666 - 财政年份:2010
- 资助金额:
$ 56.62万 - 项目类别:
Targeting the MYC Oncogene with CDK Inhibitors
使用 CDK 抑制剂靶向 MYC 癌基因
- 批准号:
7890072 - 财政年份:2010
- 资助金额:
$ 56.62万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 56.62万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 56.62万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 56.62万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 56.62万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 56.62万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 56.62万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 56.62万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 56.62万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 56.62万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 56.62万 - 项目类别:














{{item.name}}会员




