Deep Learning-based Imaging Biomarkers for Knee Osteoarthritis

基于深度学习的膝骨关节炎成像生物标志物

基本信息

  • 批准号:
    10395927
  • 负责人:
  • 金额:
    $ 49.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-02 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT In the U.S., more than 600,000 knee osteoarthritis (OA)-related total knee joint replacement (TKR) cases are reported every year, exceeding $17 billion estimated direct costs annually. There is a growing need for disease- modifying therapies that prevent or delay the need for TKR. However, development of such therapies remains challenging due to the lack of objective and measurable OA biomarkers for disease progression. The course of the OA is highly variable between individuals and the OA progresses too slowly, making it difficult to identify sensitive OA biomarkers capable of capturing minor changes on the knee joint. This has slowed development of effective therapies and prevents physicians from providing the most effective advice about minimizing the need for TKR. In this project, our goal is to develop imaging biomarkers to monitor minor OA-related changes in knee joint health that lead to TKR. To achieve this goal, we will combine novel deep learning algorithms with clinical and imaging data from the Osteoarthritis Initiative (OAI). The OAI dataset includes clinical data, biospecimens, radiographs, and magnetic resonance (MR) images collected over 8 years. The proposed project has three Specific Aims: (i) to develop an automated OA-relevant biomarker identification tool from the bilateral posteroanterior fixed-flexion knee radiographs using deep convolutional neural networks (CNNs) and recurrent neural networks (RNNs) combined with the OA progression outcome of subjects (n = 882); (ii) to develop an automated OA-relevant biomarker identification tool from structural and compositional MR images using 3D CNNs with RNNs combined with the OA progression outcome of subjects (n = 882); and (iii) to determine whether deep learning–based imaging biomarkers can act as surrogates to predict the OA progression using a subject cohort (n = 296) independent of the cohort used to identify imaging biomarkers. The proposed project will couple deep learning with diagnostic radiology to unveil key combinations of OA-relevant features directly from images with minimal user interaction. This will facilitate fast individualized assessment of OA progression using whole knee joint images directly. If successful, this study will bring new insights into the development of imaging biomarkers for OA progression and more broadly into our understanding and treatment of OA. The knowledge gained in this project will help to advance close monitoring of OA progression by opening new perspectives on the regions and parameters for potential inclusion in both intervention studies and clinical practice.
摘要 在美国,超过600,000例膝关节骨关节炎(OA)相关的全膝关节置换(TKR)病例 每年报告的直接费用估计超过170亿美元。对疾病的需求越来越大- 修改预防或延迟TKR需求的治疗方法。然而,这种疗法的发展仍然存在。 由于缺乏疾病进展的客观和可测量的OA生物标志物,因此具有挑战性。过程 OA在个体之间具有高度可变性,并且OA进展太慢,使得难以识别 能够捕获膝关节微小变化的敏感OA生物标志物。这减缓了发展, 有效的治疗,并阻止医生提供最有效的建议,尽量减少需要 对于TKR。在这个项目中,我们的目标是开发成像生物标志物来监测膝关节OA相关的微小变化。 导致TKR关节健康。为了实现这一目标,我们将联合收割机结合新型深度学习算法和临床 和来自骨关节炎倡议(OAI)的成像数据。OAI数据集包括临床数据、生物样本、 X光片和磁共振(MR)图像收集了8年。该项目有三个 具体目标:(i)开发一种自动化的OA相关生物标志物识别工具, 使用深卷积神经网络(CNN)和复发性后前位固定屈曲膝关节X线片 神经网络(RNN)与受试者(n = 882)的OA进展结果相结合;(ii)开发一个 使用3D从结构和成分MR图像自动识别OA相关生物标志物的工具 CNN与RNN结合受试者的OA进展结果(n = 882);以及(iii)确定是否 基于深度学习的成像生物标志物可以作为替代物,使用受试者预测OA进展 队列(n = 296),独立于用于鉴定成像生物标志物的队列。该项目将结合 通过诊断放射学进行深度学习,直接从图像中揭示OA相关特征的关键组合 最小化用户交互。这将有助于使用整体评估快速个性化评估OA进展。 膝关节直接成像。如果成功,这项研究将为成像技术的发展带来新的见解 OA进展的生物标志物,更广泛地涉及我们对OA的理解和治疗。知识 在本项目中获得的成果将有助于通过开辟新的视角来促进对OA进展的密切监测, 可能纳入干预研究和临床实践的区域和参数。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cem Murat Deniz其他文献

Cem Murat Deniz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cem Murat Deniz', 18)}}的其他基金

Deep Learning-based Imaging Biomarkers for Knee Osteoarthritis
基于深度学习的膝骨关节炎成像生物标志物
  • 批准号:
    10615676
  • 财政年份:
    2019
  • 资助金额:
    $ 49.21万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 49.21万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 49.21万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了