Models and Algorithms for Beta-Barrel Membrane Proteins and Stochastic Networks

β-桶膜蛋白和随机网络的模型和算法

基本信息

  • 批准号:
    10395949
  • 负责人:
  • 金额:
    $ 46.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-05-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Summary Our project address fundamental problems of structures and mechanisms of protein molecules and their interaction networks. At the protein level, we will continue our NIGMS supported studies and focus on A) -Barrel Membrane Proteins (MPs). We will develop models and computational tools for predicting their structure, understanding their mechanism, and formulating design of novel MPs. At the network level, we will explore a new research direction. We will B) develop models and exact algorithms by solving the discrete chemical master equation (dCME) to compute exact probability landscape and discrete probability flux of networks for studying stochastic control of cellular behavior. Furthermore, we will examine how phenotype switching arise in networks, starting from commonly occurring network motifs and comprehensively characterize the universe of their multistabilities. In Project A), we will focus on MPs found in the outer membrane of gram-negative bacteria, eukaryotic mitochondria, and in exotoxins. MPs are involved in fundamental processes such as transport, translocation, energy metabolism, and apoptosis induction. They are also important therapeutic targets against infectious diseases. In addition, there are significant engineering interests in developing MPs as bionanopores for single molecule detection and other biotech applications. Despite recent progress, our knowledge of MPs is limited: only a few dozens of structures of non-homologous MPs are known. Importantly, we lack general understanding of the organizing principles of MPs and their functioning mechanism. We propose to develop models and algorithms for A1) predicting structures of MPs, A2) deciphering the mechanism of gating in OmpG, and A3) designing novel MPs with desired geometry and stability towards broad biotech applications. Our approach will be based on the reduced state model we developed, the MHIP empirical potential function we obtained through extensive combinatorial analysis, the (m)DiSGro loop structure prediction and sampling algorithms, with significant new development. In Project B), we will focus on the fundamental problem of constructing exact stochastic probability landscape of networks of interacting molecules. Many important biological reactions involve only a small copy number of molecules. Stochasticity arising from such low copy events as well as rare events are important for fundamental processes such as embryonic development, stem cell differentiation and nongenetic heterogeneity. While the discrete chemical master equation (dCME) provides a generate framework for understanding stochasticity in mesocopic systems, many foundational problems remain. Despite significant progress, the exact time- evolving probability landscapes for many networks of interests are computationally inaccessible, except for a few simple toy problems (e.g. those with <4 nodes). One has to rely on Gillespie simulation or approximation of Langevin/Fokker-Planck formulations, with errors largely unexamined. We propose to develop B1) theoretical model and tools for computing probability fluxes on discrete state space at arbitrary microstate and for arbitrary reactions, so passageways, transient states, and critical paths important for characterizing phenotypical switches can be identified. We will also carried out computational analysis to decipher B2) common mechanisms of stochastic switching, as well as comprehensive mapping of phase diagrams of emerging multistabilities in the most widely encountered common biological motifs. Our approach will be based on our recent algorithm and theoretical development of multi-finite buffer network structure analysis, the corner simplex optimal state enumeration algorithm, and the ACME method for exact computation of time-evolving probability landscape, as well as error-bound analysis based our quotient matrix and the technique of stochastic ordering.
总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jie Liang其他文献

Jie Liang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jie Liang', 18)}}的其他基金

Predicting 3D physical gene-enhancer interactions through integration of GTEx and 4DN data
通过整合 GTEx 和 4DN 数据预测 3D 物理基因增强子相互作用
  • 批准号:
    10776871
  • 财政年份:
    2023
  • 资助金额:
    $ 46.55万
  • 项目类别:
Constructing High-Resolution Ensemble Models of 3D Single-Cell Chromatin Conformations of eQTL Loci from Integrated Analysis of 4DN-GTEx Data towards Structural Basis of Differential Gene Expression
从 4DN-GTEx 数据的集成分析构建 eQTL 位点 3D 单细胞染色质构象的高分辨率整体模型,以构建差异基因表达的结构基础
  • 批准号:
    10357063
  • 财政年份:
    2021
  • 资助金额:
    $ 46.55万
  • 项目类别:
Models and Algorithms for Beta-Barrel Membrane Proteins and Stochastic Networks
β-桶膜蛋白和随机网络的模型和算法
  • 批准号:
    9923024
  • 财政年份:
    2018
  • 资助金额:
    $ 46.55万
  • 项目类别:
Constructing Ensembles of 3D Structures of Igh Locus and Predicting Novel Chromosomal Interactions
构建 Igh 基因座 3D 结构的集合并预测新的染色体相互作用
  • 批准号:
    9317936
  • 财政年份:
    2017
  • 资助金额:
    $ 46.55万
  • 项目类别:
Computational Assembly of Beta Barrel Membrane Protein
β 桶膜蛋白的计算组装
  • 批准号:
    8546506
  • 财政年份:
    2007
  • 资助金额:
    $ 46.55万
  • 项目类别:
Computational Assembly of Beta Barrel Membrane Protein
β 桶膜蛋白的计算组装
  • 批准号:
    7586266
  • 财政年份:
    2007
  • 资助金额:
    $ 46.55万
  • 项目类别:
Computational Assembly of Beta Barrel Membrane Protein
β 桶膜蛋白的计算组装
  • 批准号:
    7213136
  • 财政年份:
    2007
  • 资助金额:
    $ 46.55万
  • 项目类别:
Computational Assembly of Beta Barrel Membrane Protein
β 桶膜蛋白的计算组装
  • 批准号:
    8918774
  • 财政年份:
    2007
  • 资助金额:
    $ 46.55万
  • 项目类别:
Computational Assembly of Beta Barrel Membrane Protein
β 桶膜蛋白的计算组装
  • 批准号:
    7356031
  • 财政年份:
    2007
  • 资助金额:
    $ 46.55万
  • 项目类别:
Computational Assembly of Beta Barrel Membrane Protein
β 桶膜蛋白的计算组装
  • 批准号:
    8034791
  • 财政年份:
    2007
  • 资助金额:
    $ 46.55万
  • 项目类别:

相似海外基金

CAREER: Transferring biological networks emergent principles to drone swarm collaborative algorithms
职业:将生物网络新兴原理转移到无人机群协作算法
  • 批准号:
    2339373
  • 财政年份:
    2024
  • 资助金额:
    $ 46.55万
  • 项目类别:
    Continuing Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
  • 批准号:
    10655174
  • 财政年份:
    2023
  • 资助金额:
    $ 46.55万
  • 项目类别:
Statistical Inference from Multiscale Biological Data: theory, algorithms, applications
多尺度生物数据的统计推断:理论、算法、应用
  • 批准号:
    EP/Y037375/1
  • 财政年份:
    2023
  • 资助金额:
    $ 46.55万
  • 项目类别:
    Research Grant
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
  • 批准号:
    RGPIN-2016-03661
  • 财政年份:
    2021
  • 资助金额:
    $ 46.55万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
  • 批准号:
    RGPIN-2016-03661
  • 财政年份:
    2019
  • 资助金额:
    $ 46.55万
  • 项目类别:
    Discovery Grants Program - Individual
Building flexible biological particle detection algorithms for emerging real-time instrumentation
为新兴实时仪器构建灵活的生物颗粒检测算法
  • 批准号:
    2278799
  • 财政年份:
    2019
  • 资助金额:
    $ 46.55万
  • 项目类别:
    Studentship
CAREER: Microscopy Image Analysis to Aid Biological Discovery: Optics, Algorithms, and Community
职业:显微镜图像分析有助于生物发现:光学、算法和社区
  • 批准号:
    2019967
  • 财政年份:
    2019
  • 资助金额:
    $ 46.55万
  • 项目类别:
    Standard Grant
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
  • 批准号:
    RGPIN-2016-03661
  • 财政年份:
    2018
  • 资助金额:
    $ 46.55万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
  • 批准号:
    RGPIN-2016-03661
  • 财政年份:
    2017
  • 资助金额:
    $ 46.55万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
  • 批准号:
    RGPIN-2016-03661
  • 财政年份:
    2016
  • 资助金额:
    $ 46.55万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了