Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo

即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能

基本信息

  • 批准号:
    10655174
  • 负责人:
  • 金额:
    $ 41.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2028-07-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Cellular metabolism is highly dynamic and strongly influenced by its local vascular microenvironment, gaining a systems-level view of tumor metabolism and vasculature in vivo is essential in understanding many critical cancer biology questions. However, there are surprisingly few techniques available that can quantify the key metabolic and vascular endpoints together in vivo with easy access. The goal here is to fill this gap by developing a point-of-care optical spectroscopy platform with a tumor-sensitive fiber probe and novel ratio- metric data processing techniques to quantify the major axes of tumor metabolism (glucose uptake, mitochondrial membrane potential, Bodipy) and the associated vasculature (oxygenation, hemoglobin) on biological models in vivo. For scientific validation and translational purposes, we will compare our techniques with existing metabolic tools, we will also integrate our optical strategies with the state-of-art metabolomics technique, i.e. Stable Isotope-Resolved Metabolomics (SIRM), to provide a rapid and comprehensive understanding in tumor metabolism. We will then demonstrate our synergistic approach through addressing a contemporary problem in cancer therapy for head and neck squamous cell cancer (HNSCC). Specifically, we will address the critical challenge of radio-resistance (RR) in HNSCC and test the hypothesis that radiotherapy (RT) induced HIF-1α and HIF-2α activation and the following metabolic changes are responsible for HNSCC RR and recurrence, the tumor-specific in vivo genetic editing platform targeting on HIF-1α and HIF-2α can improve RT efficacy. Our point-of-care optical spectroscopy along with novel ratio-metric algorithms make our technologies easy to access, easy to use, and systematic, which are all critical to maximizing its accessibility for cancer research. Our spectroscopy techniques and their integration with the SIRM will provide new ways of studying cancer biology and diseases, and they will also impact the study of a wide array of other biomedical problems through the lens of tumor bioenergetics and vasculature. Our study on HNSCC RR mechanisms and the demonstration of tumor-specific genetic editing platform in orthotropic HNSCC models will offer new ways for targeted RT to improve HNSCC patient survival rates. The platforms and methodologies developed in this project will be applicable to the study of RR and recurrence in other types of human cancers.
项目摘要 细胞代谢是高度动态的,并受到其局部血管微环境的强烈影响, 对体内肿瘤代谢和脉管系统的系统水平的观察对于理解许多关键的 癌症生物学问题。然而,令人惊讶的是,很少有技术可以量化密钥 代谢和血管终点在体内一起,易于进入。我们的目标是填补这一空白, 开发具有肿瘤敏感光纤探针和新比率的即时光学光谱平台, 量化肿瘤代谢主轴(葡萄糖摄取, 线粒体膜电位(Bodipy)和相关的血管系统(氧合,血红蛋白) 体内生物模型。为了科学验证和翻译的目的,我们将比较我们的技术 利用现有的代谢工具,我们还将把我们的光学策略与最先进的代谢组学相结合。 技术,即稳定同位素解析代谢组学(SIRM),以提供快速和全面的 了解肿瘤代谢。然后,我们将通过解决一个 头颈部鳞状细胞癌(HNSCC)治疗中的当代问题。我们特别 将解决HNSCC放射抵抗(RR)的关键挑战,并检验放射治疗 (RT)诱导的HIF-1α和HIF-2α激活以及随后的代谢变化是HNSCC发生的原因 RR和复发,靶向HIF-1α和HIF-2α的肿瘤特异性体内基因编辑平台可以 提高RT疗效。我们的护理点光学光谱学沿着新的比率度量算法, 易于获取、易于使用和系统化的技术,这些都是最大限度地提高其可访问性的关键 用于癌症研究。我们的光谱技术及其与SIRM的集成将提供新的方法 研究癌症生物学和疾病,他们也将影响其他生物医学领域的广泛研究。 通过肿瘤生物能量学和脉管系统的透镜来解决问题。我们对HNSCC RR机制的研究, 在正交各向异性HNSCC模型中展示肿瘤特异性基因编辑平台将提供新的方法 用于靶向RT以提高HNSCC患者的存活率。在此期间开发的平台和方法 该项目将适用于其他类型人类癌症的RR和复发研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Caigang Zhu其他文献

Caigang Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Caigang Zhu', 18)}}的其他基金

Non-destructive optical spectroscopic assay for high-throughput metabolic characterization of in vitro cell models and patient-derived organoids
用于体外细胞模型和患者来源类器官高通量代谢表征的无损光学光谱测定
  • 批准号:
    10348268
  • 财政年份:
    2022
  • 资助金额:
    $ 41.65万
  • 项目类别:
Non-destructive optical spectroscopic assay for high-throughput metabolic characterization of in vitro cell models and patient-derived organoids
用于体外细胞模型和患者来源类器官高通量代谢表征的无损光学光谱测定
  • 批准号:
    10666355
  • 财政年份:
    2022
  • 资助金额:
    $ 41.65万
  • 项目类别:
An intra-vital metabolic microscope to reveal the mechanisms of radiation resistance in head and neck carcinomas
活体代谢显微镜揭示头颈癌的抗辐射机制
  • 批准号:
    10573171
  • 财政年份:
    2017
  • 资助金额:
    $ 41.65万
  • 项目类别:
An intra-vital metabolic microscope to reveal the mechanisms of radiation resistance in head and neck carcinomas
活体代谢显微镜揭示头颈癌的抗辐射机制
  • 批准号:
    10271869
  • 财政年份:
    2017
  • 资助金额:
    $ 41.65万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.65万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 41.65万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 41.65万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 41.65万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 41.65万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 41.65万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 41.65万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 41.65万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 41.65万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 41.65万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了