Functional anomaly mapping of aphasia recovery

失语症恢复的功能异常图谱

基本信息

  • 批准号:
    10398979
  • 负责人:
  • 金额:
    $ 12.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary Difficulty communicating (aphasia) is one of the most common and debilitating results of left-hemisphere stroke. Although aphasia symptoms are highly variable and recovery is difficult to predict, much research has shown that lesion size and location are major drivers of aphasia symptoms and recovery. However, this previous research has only considered direct anatomical damage caused by the lesion. This is a critical limitation because stroke lesions also cause indirect effects on the function of brain structures distant from the lesion. Throughout this application, I refer to this as “remote dysfunction.” Although initially thought to resolve quickly after the stroke, remote dysfunction is now known to persist throughout recovery and independently contribute to outcomes. Studies of aphasia recovery have focused almost exclusively on the idea of recovery through reorganization, whereby behavioral improvement occurs through plastic reorganization of brain networks. These studies have eschewed the older idea that recovery occurs through partial resolution of remote dysfunction (RRD) caused by lesions. Consequently, it is not clear how RRD contributes to aphasia recovery. The applicant has developed a new machine learning approach called functional anomaly mapping (FAM) that uses resting BOLD functional MRI signal to map remote dysfunction throughout the brain in individual stroke survivors. FAM maps have much better test-retest reliability than current measures, like task- related fMRI activity and resting state functional connectivity, as well as several other features that make it promising as a clinically useful tool. The applicant has already demonstrated that remote dysfunction measured with FAM relates to behavioral outcomes in people with chronic aphasia. During the mentored phase of this award, the applicant will optimize the FAM approach and test competing hypotheses about the biological mechanisms generating the remote dysfunction measured in chronic aphasia. During the independent phase, the applicant proposes a longitudinal study to understand the contribution of RRD to aphasia recovery. The applicant proposes a comprehensive training plan to expand his knowledge in the following areas: the biological mechanisms of stroke recovery and neuroplasticity beyond aphasia, machine learning, biomarker development, and advanced neuroimaging analysis. The research and training during this award will enable the applicant to develop a long-term, independent research program focused on understanding the neural correlates of aphasia and developing translational brain measures to inform clinical decision-making in aphasia neurorehabilitation.
项目摘要 沟通困难(失语症)是左半球最常见和最令人衰弱的结果之一 中风虽然失语症的症状是高度可变的,恢复是难以预测的,许多研究已经 显示病灶大小和位置是失语症症状和恢复的主要驱动因素。但这 先前的研究仅考虑了由病变引起的直接解剖损伤。这是一个关键 限制,因为中风病变也会对远离大脑结构的功能产生间接影响。 损伤。在整个申请中,我将其称为“远程功能障碍”。虽然最初认为解决 中风后不久,现在已知远端功能障碍在整个恢复过程中持续存在, 有助于结果。失语症恢复的研究几乎完全集中在恢复的想法上 通过大脑的可塑性重组, 网络.这些研究避开了旧的观点,即恢复是通过部分解决 由病变引起的远端功能障碍(RRD)。因此,目前尚不清楚RRD如何导致失语症 复苏申请人开发了一种新的机器学习方法,称为功能异常映射 (FAM)它使用静息BOLD功能性MRI信号来绘制整个大脑的远程功能障碍, 中风幸存者FAM地图有更好的重测信度比目前的措施,如任务- 相关的功能磁共振成像活动和静息状态功能连接,以及其他几个功能,使它 有望成为临床有用的工具。申请人已经证明远程功能障碍 与慢性失语症患者的行为结果有关。在指导期间, 在本奖项的第一阶段,申请人将优化FAM方法,并测试有关 在慢性失语症中测量产生远程功能障碍的生物学机制。期间 在独立阶段,申请人提出了一项纵向研究,以了解RRD对 失语症恢复。申请人提出一个全面的培训计划,以扩大他的知识, 以下领域:中风恢复的生物学机制和失语症以外的神经可塑性,机器 学习、生物标记物开发和高级神经影像分析。在此期间的研究和培训 该奖项将使申请人能够开发一个长期的,独立的研究计划,重点是 了解失语症的神经相关性,并制定翻译大脑措施,以告知临床 失语症神经康复的决策。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Aphasia severity is modulated by race and lesion size in chronic survivors: A retrospective study.
慢性幸存者失语症的严重程度受种族和病变大小的调节:一项回顾性研究。
  • DOI:
    10.1016/j.jcomdis.2022.106270
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Gadson,DavetrinaS;Wesley,DeliyaB;vanderStelt,CandaceM;Lacey,Elizabeth;DeMarco,AndrewT;Snider,SarahF;Turkeltaub,PeterE
  • 通讯作者:
    Turkeltaub,PeterE
Structural disconnection of the posterior medial frontal cortex reduces speech error monitoring.
  • DOI:
    10.1016/j.nicl.2021.102934
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    McCall JD;Vivian Dickens J;Mandal AS;DeMarco AT;Fama ME;Lacey EH;Kelkar A;Medaglia JD;Turkeltaub PE
  • 通讯作者:
    Turkeltaub PE
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew T DeMarco其他文献

Andrew T DeMarco的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew T DeMarco', 18)}}的其他基金

Functional anomaly mapping of aphasia recovery
失语症恢复的功能异常图谱
  • 批准号:
    10837812
  • 财政年份:
    2023
  • 资助金额:
    $ 12.04万
  • 项目类别:
Functional anomaly mapping of aphasia recovery
失语症恢复的功能异常图谱
  • 批准号:
    10214766
  • 财政年份:
    2021
  • 资助金额:
    $ 12.04万
  • 项目类别:
Neural correlates of treatment-induced recovery of phonological processing in chronic aphasia
慢性失语症治疗引起的语音处理恢复的神经相关性
  • 批准号:
    8990733
  • 财政年份:
    2015
  • 资助金额:
    $ 12.04万
  • 项目类别:
Neural correlates of treatment-induced recovery of phonological processing in chronic aphasia
慢性失语症治疗引起的语音处理恢复的神经相关性
  • 批准号:
    8907444
  • 财政年份:
    2015
  • 资助金额:
    $ 12.04万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了