Circuit-based mechanisms of neuronal vulnerability in the adult EC
成人内皮细胞神经元脆弱性的基于回路的机制
基本信息
- 批准号:10400031
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2024-04-14
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAdultAlzheimer&aposs DiseaseApoptosisApoptoticAutomobile DrivingAxonBindingBrainBrain regionCell DeathCellsCessation of lifeChloride ChannelsChronicCodeCognitive deficitsCommunicationCytoplasmic GranulesDataDevelopmentDevelopmental ProcessDiseaseElectrophysiology (science)EngineeringExcisionExhibitsFire - disastersFunctional disorderFutureGenerationsGeneticGliosisGlutamatesGlycineGoalsHippocampus (Brain)Infusion proceduresInjuryIvermectinLifeLigandsMediatingMemoryModelingMorphologic artifactsMusNerve DegenerationNeurodegenerative DisordersNeuronsNeurotransmittersPathway interactionsPatternPerforant PathwayPharmacologyPopulationProcessSignal TransductionSodium ChannelSymptomsSynapsesSynaptic plasticityTestingTetanus ToxinTetrodotoxinbasecompetitive environmentcritical perioddentate gyrusentorhinal cortexexperimental studygenetic approachgranule cellin vivoinsightmouse modelneuron lossneuronal survivalneurotransmitter releasepostnatalpostnatal developmentpostnatal periodpostsynapticpreventpro-apoptotic proteinresponseway finding
项目摘要
Project summary/abstract.
Entorhinal cortex layer II (ECII) neurons are some of the first cells to degenerate in Alzheimer’s Disease (AD). ECII
axons form the perforant pathway and are the major cortical input into the hippocampus. The perforant pathway supports
memory formation and spatial navigation throughout life, and loss of this input is consistent with the cognitive deficits
that present early in AD. To mimic the loss of this input in AD, the Jankowsky lab created a chemogenetic mouse model
of perforant pathway disruption in which a subset of ECII neurons express an engineered chloride channel (GlyCl) to
prevent the generation of action potentials. We unexpectedly discovered that entorhinal neurons were highly vulnerable to
silencing. Shortly after being inactivated, many ECII neurons retract their axons from the dentate gyrus, express pro-
apoptotic proteins, and then are eliminated from the circuit. We observed similar neurodegeneration after eliminating
neurotransmitter release with tetanus toxin (TeTX), confirming that neuronal loss is not an artifact of GlyCl activation.
Further, this silencing-induced degeneration is not shared by other brain regions, as neither the pre/parasubiculum nor
retrosplenial cortex exhibit cell loss after neuronal inactivation. This suggests that specific features of the entorhinal
cortex may confer neuronal vulnerability to inactivity. One possible vulnerability could be related to the formation of
entorhinal-hippocampal circuit. We noted that the pattern of ECII degeneration after silencing was strikingly similar to the
processes that guide to refinement of the perforant pathway during development. In early post-natal periods, inactive ECII
neurons are pruned from the circuit in a process that is mediated by local differences in activity, referred to as activity-
dependent competition. Projections are only pruned when neurons are sparsely inactive - when all cells are equally
inactive, none are removed. This proposal will test two hypotheses about the cellular mechanism driving neuronal death in
the mature entorhinal cortex. Aim 1 will determine whether activity-dependent competition persists in the adult ECII.
Pharmacological and genetic approaches will be used to modulate relative activity levels to determine how cell death is
influenced by activity differences between neighboring cells. Aim 2 will determine whether post-synaptic partners
promote the survival of ECII neurons. Our preliminary data suggests that eliminating neurotransmitter release from ECII
neurons – without blocking action potentials - is sufficient to induce degeneration. I will therefore use pharmacological
and genetic approaches to both reduce neurotransmitter binding in dentate granule cells and eliminate their ability to fire
action potentials in response to ECII input. This will test whether neurotransmitter-mediate signaling, or post-synaptic
activity itself, is required for ECII neuron survival. Data from these aims will determine how activity disruption may
mediate cell death in the adult brain. Further, these data may suggest that mechanisms which drive cell death during
postnatal development are not necessarily limited to critical periods but may persist into adulthood within certain
pathways. Understanding these mechanisms may inform future studies on neurodegenerative disease and how circuit
disruption may contribute to neuronal loss.
项目摘要/摘要。
II(ECII)神经元的内嗅皮层是第一个在阿尔茨海默氏病(AD)中退化的细胞。 ECII
轴突形成穿孔途径,是海马的主要皮质输入。穿孔道路支撑
记忆形成和空间导航一生,并且输入的丢失与认知缺陷一致
在广告中的早期。为了模仿AD中此输入的丢失,Jankowsky实验室创建了化学遗传小鼠模型
经济型途径中断,其中一部分ECII神经元将工程氯化物通道(Glycl)表达为
防止产生动作电位。我们出乎意料地发现,内嗅神经元非常容易受到伤害
沉默。失活后不久,许多ECII神经元从齿状回缩回轴突
凋亡蛋白,然后从电路中消除。我们观察到了相似的神经变性
神经递质用破伤风毒素(TETX)释放,确认神经损失不是Glycl激活的伪像。
此外,这种沉默引起的变性并不是其他大脑区域共享的
脾后皮质在神经元失活后表现出细胞丧失。这表明内嗅的特定特征
皮层可能赋予神经元脆弱性。一个可能的漏洞可能与形成有关
内嗅 - 海马电路。我们注意到沉默后的ECII变性模式与
在开发过程中穿孔途径改进的过程。在产后早期,不活跃的ECII
神经元是通过在活动局部差异介导的过程中从电路中修剪的,被称为活动 -
依赖竞争。只有在神经元稀疏活性时,预测才会修剪 - 当所有细胞均等时
无活性,没有删除。该提案将检验两个关于驱动神经元死亡的细胞机制的假设
成熟的内嗅皮层。 AIM 1将确定成人ECII中是否依赖活动竞争持续存在。
药理和遗传方法将用于调节相对活性水平以确定细胞死亡的方式
受邻近细胞之间的活性差异的影响。 AIM 2将确定后突触的伴侣是否
促进ECII神经元的生存。我们的初步数据表明,消除了从ECII释放神经递质
神经元 - 没有阻断动作电位 - 足以诱导退化。因此,我将使用药品
以及减少牙齿颗粒细胞中神经递质结合的遗传方法并消除了它们的射击能力
响应ECII输入的动作电位。这将测试神经递质 - 介质信号传导还是突触后的信号
活动本身是ECII神经元存活所必需的。来自这些目标的数据将决定活动中断如何
介导成人大脑的细胞死亡。此外,这些数据可能表明在驱动细胞死亡的机制
产后发展不一定仅限于关键时期,但可能会持续到成年
途径。了解这些机制可能会为关于神经退行性疾病的未来研究以及电路如何
破坏可能导致神经元丧失。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caleb Wood其他文献
Caleb Wood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caleb Wood', 18)}}的其他基金
Circuit-based mechanisms of neuronal vulnerability in the adult EC
成人内皮细胞神经元脆弱性的基于回路的机制
- 批准号:
10615015 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of Primary Sensory Neuron CaMKII Signaling in Regulation of Pain
初级感觉神经元 CaMKII 信号传导在疼痛调节中的作用
- 批准号:
10656886 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
The Effects of Aging and Microglia Dysfunction on Remyelination
衰老和小胶质细胞功能障碍对髓鞘再生的影响
- 批准号:
10603320 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Inhibitory feedback in the avian auditory brainstem
鸟类听觉脑干的抑制反馈
- 批准号:
10677324 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Investigating Astrocytic Glutamate and Potassium Dynamics in the Healthy and Injured Brain
研究健康和受伤大脑中星形胶质细胞谷氨酸和钾的动态
- 批准号:
10754425 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别: