High-Throughput Volumetric Photoacoustic Imaging of Living Vascularized Organoids
活体血管类器官的高通量体积光声成像
基本信息
- 批准号:10399983
- 负责人:
- 金额:$ 49.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAnatomyAngiogenesis InhibitorsAnimal ModelBiochemicalBiomimeticsBioreactorsBlood VesselsCapitalCardiovascular DiseasesCell Culture TechniquesCellsClinicalClinical TrialsDetectionDevelopmentDevicesDiabetes MellitusDiffusionDimensionsDiseaseDisease modelDrug InteractionsDrug MonitoringDrug ScreeningDrug toxicityEndothelial CellsEquilibriumExpenditureFunctional ImagingGenetic EngineeringGeometryGoalsHistologicHumanImageInvestmentsLabelLightLocationLongitudinal StudiesMalignant Epithelial CellMalignant NeoplasmsMalignant neoplasm of liverMediatingMetabolismMicrofluidicsMicroscopyModelingMolecularMonitorNeurodegenerative DisordersNeurologyNutrientOncologyOpticsOrganOrganoidsPathologicPathologyPatientsPenetrationPharmaceutical PreparationsPharmacotherapyPhysiologicalPhysiologyPreclinical Drug DevelopmentPrimary carcinoma of the liver cellsProcessPropertyReactionResolutionStructureSystemTechnologyTestingTherapeuticThree-Dimensional ImagingTimeTissue EngineeringTissue ModelTissuesUltrasonicsUnited States Food and Drug AdministrationVascularizationanatomic imagingangiogenesisbasebioprintingcancer imagingcombatcostdensitydrug candidatedrug developmentdrug efficacydrug testingexperiencehigh-throughput drug screeninghuman diseasehuman tissueimaging capabilitiesimaging modalityimprovedin vivomicrofluidic technologymillimeterminiaturizemolecular imagingnovelnovel therapeuticsoptical imagingoptoacoustic tomographyorgan on a chipoxygen transportpersonalized medicinephotoacoustic imagingresponsescreeningself assemblysuccesstooltranscription factor
项目摘要
Abstract
Over the last decade, there has been a 62% rise in the number of therapeutic compounds under development
for cancers, diabetes, neurodegenerative diseases, and cardiovascular diseases, and the total expenditure has
nearly doubled. Despite the significant investment, the average number of new drugs approved by the Food and
Drug Administration (FDA) has declined since the 1990s, mainly due to the low success rate of human clinical
trials and the insufficient efficacy and/or excessive adverse (toxic) reactions associated with the candidate drugs.
Planar cell cultures and animal models used in drug testing often fail to accurately reflect human physiology and
pathology. Three-dimensional (3D) human cell-based organ-on-a-chip models, combined with advanced
vascularization and microfluidics technologies, have been increasingly used to improve drug testing, by
recapitulating important physiological parameters of their in vivo human counterparts. However, the
characterization of 3D vascularized organoid cultures is challenging with pure optical imaging methods that reach
only small depths (~1 mm) and/or lacks functional imaging capability. The organoids can reach 2–3 mm in all
dimensions, and the response to the drug treatment by cells at different locations may significantly vary due to
non-uniform tissue properties, limited molecular diffusion, and heterogeneous vascular arborization. To address
these issues, we propose to develop a novel integrated imaging-bioreactor platform that combines a miniaturized
photoacoustic tomography (mini-PAT) system (Aim 1) and a human vascularized organ-on-a-chip bioreactor
(Aim 2). Mini-PAT can be directly integrated onto the bioreactor and provide critical anatomical and functional
information about the 3D organoid’s development, vasculature function and metabolism. As proof of concept,
we will apply the integrated platform for on-chip, longitudinal, and volumetric imaging of the progression of
hepatocellular carcinoma (HCC) organoids, their multiscale vascularization, and their response to anti-
angiogenic drugs (Aim 3). Most importantly, both the mini-PAT and bioreactor are highly compact and low-cost
(~$200 per unit), so they can be readily multiplexed for monitoring a large array of organoids in parallel. The
highly heterogeneous drug-organoid interactions can thus be simultaneously studied in a statistically meaningful
manner. Ultimately, this proposal will provide a platform technology for a variety of applications that require
high-throughput pathological testing on human tissue models. More excitingly, it would pave the way for
personalized medicine screening using an array of patient-derived disease models.
摘要
在过去的十年中,开发中的治疗化合物数量增加了62
癌症、糖尿病、神经退行性疾病和心血管疾病,总支出
几乎翻了一番。尽管投资巨大,但食品和药物管理局批准的新药平均数量
自20世纪90年代以来,美国食品药品监督管理局(FDA)已经下降,主要是由于人类临床试验的成功率低。
试验以及与候选药物相关的疗效不足和/或过度不良(毒性)反应。
用于药物测试的平面细胞培养物和动物模型通常不能准确地反映人体生理学和
病理基于三维(3D)人体细胞的器官芯片模型,结合先进的
血管化和微流体技术,已越来越多地用于改善药物测试,
概括了它们在体内人类对应物的重要生理参数。但
用纯光学成像方法表征3D血管化类器官培养物具有挑战性,
仅小深度(~1 mm)和/或缺乏功能成像能力。所有类器官可达2-3 mm
尺寸,并且不同位置处的细胞对药物治疗的响应可能由于以下原因而显著不同:
不均匀的组织性质、有限的分子扩散和不均匀的血管分支。解决
这些问题,我们建议开发一种新的集成成像生物反应器平台,结合了小型化
光声断层扫描(mini-PAT)系统(Aim 1)和人血管化器官芯片生物反应器
(Aim 2)。Mini-PAT可以直接集成到生物反应器上,并提供关键的解剖和功能
关于3D类器官的发育、脉管系统功能和代谢的信息。作为概念的证明,
我们将应用集成平台进行芯片上、纵向和体积成像,
肝细胞癌(HCC)类器官,它们的多尺度血管化,以及它们对抗-
血管生成药物(Aim 3)。最重要的是,mini-PAT和生物反应器都是高度紧凑和低成本的
(每单位约200美元),因此它们可以很容易地多路复用,以并行监测大量类器官。的
因此,高度异质性的药物-类器官相互作用可以同时以统计学上有意义的方式进行研究。
方式最终,该提案将为各种应用程序提供平台技术,
在人体组织模型上进行高通量病理学测试。更令人兴奋的是,这将为
使用一系列源自患者的疾病模型进行个性化药物筛选。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Imaging the aged brain: pertinence and methods.
- DOI:10.21037/qims.2019.05.06
- 发表时间:2019-05
- 期刊:
- 影响因子:2.8
- 作者:Hannah Humayun;Junjie Yao
- 通讯作者:Hannah Humayun;Junjie Yao
3D-bioprinted cancer-on-a-chip: level-up organotypic in vitro models.
- DOI:10.1016/j.tibtech.2021.08.007
- 发表时间:2022-04
- 期刊:
- 影响因子:17.3
- 作者:Monteiro MV;Zhang YS;Gaspar VM;Mano JF
- 通讯作者:Mano JF
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junjie Yao其他文献
Junjie Yao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junjie Yao', 18)}}的其他基金
High-throughput Imaging-integrated Vascular Model for Understanding Thromboembolism and Therapeutics Screening
用于了解血栓栓塞和治疗筛选的高通量成像集成血管模型
- 批准号:
10564808 - 财政年份:2023
- 资助金额:
$ 49.75万 - 项目类别:
High-Throughput Volumetric Photoacoustic Imaging of Living Vascularized Organoids
活体血管类器官的高通量体积光声成像
- 批准号:
10078867 - 财政年份:2019
- 资助金额:
$ 49.75万 - 项目类别:
High-resolution High-speed Photoacoustic and Ultrasound Imaging of SmallVessel Functions in Ischemic Stroke
缺血性中风小血管功能的高分辨率高速光声和超声成像
- 批准号:
10471807 - 财政年份:2019
- 资助金额:
$ 49.75万 - 项目类别:
High-resolution High-speed Photoacoustic and Ultrasound Imaging of SmallVessel Functions in Ischemic Stroke
缺血性中风小血管功能的高分辨率高速光声和超声成像
- 批准号:
10684729 - 财政年份:2019
- 资助金额:
$ 49.75万 - 项目类别:
High-Throughput Volumetric Photoacoustic Imaging of Living Vascularized Organoids
活体血管类器官的高通量体积光声成像
- 批准号:
9897532 - 财政年份:2019
- 资助金额:
$ 49.75万 - 项目类别:
High-Throughput Volumetric Photoacoustic Imaging of Living Vascularized Organoids
活体血管类器官的高通量体积光声成像
- 批准号:
9762292 - 财政年份:2019
- 资助金额:
$ 49.75万 - 项目类别:
High-resolution High-speed Photoacoustic and Ultrasound Imaging of SmallVessel Functions in Ischemic Stroke
缺血性中风小血管功能的高分辨率高速光声和超声成像
- 批准号:
10232087 - 财政年份:2019
- 资助金额:
$ 49.75万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 49.75万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 49.75万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 49.75万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 49.75万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 49.75万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 49.75万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 49.75万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 49.75万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 49.75万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 49.75万 - 项目类别:
Research Grant