Developing an Ex Vivo Model of the Mesolimbic Pathway for Studying Addiction Phenotypes

开发用于研究成瘾表型的中脑边缘通路的体外模型

基本信息

项目摘要

Project Summary Drug abuse and addiction continues to be a major and growing societal problem. It develops during repeated drug use which causes a series of molecular, transcriptomic, and epigenetic modifications which remodel the neurons in the mesolimbic pathway leading addictive behavior. Despite extensive studies, treatment options remain limited in part because the underlying mechanisms contributing to addictive behavior are still not fully understood. Most previous research to study underlying molecular mechanisms have been performed in animal models specifically mice and rats, which allow scientists to manipulate a specific variable and assess alterations in drug seeking responses. Despite the power of these models, there are limitations to how well mice molecular through tissue physiologies correlate to humans. For example, there are significant differences in the number, cell type compositions, and functions of their respective mesolimbic pathway neurons. Therefore, there is a need for ex vivo model systems which capture the human genetic, epigenetic, transcriptional, and multicellular properties of mesolimbic cell types and connections. We will contribute to this goal by differentiating human stem cells into organoids containing dopaminergic and medium spiny neurons of the mesolimbic pathway and generate functional synapses between the two. The model will be interrogated by exposing the cultured neurons to cocaine and studying their molecular, transcriptional, and epigenetic responses and comparing these responses to available mice and human data. With this model, we can further understand the key underlying mechanisms that contribute to addiction formation potentially leading to specific targets for drug development.
项目概要 药物滥用和成瘾仍然是一个重大且日益严重的社会问题。它是在重复吸毒过程中形成的 它会引起一系列分子、转录组和表观遗传修饰,从而重塑神经元 中脑边缘通路导致成瘾行为。尽管进行了广泛的研究,但治疗选择在一定程度上仍然有限 因为导致成瘾行为的潜在机制仍未完全了解。最新的 已经在动物模型特别是小鼠和大鼠中进行了研究潜在分子机制的研究, 它允许科学家操纵特定变量并评估药物寻求反应的变化。尽管 尽管这些模型的力量很大,但小鼠分子通过组织生理学与人类的关联程度仍存在局限性。 例如,它们各自的数量、细胞类型组成和功能存在显着差异。 中脑边缘通路神经元。因此,需要离体模型系统来捕获人类遗传、 中边缘细胞类型和连接的表观遗传、转录和多细胞特性。我们将致力于 通过将人类干细胞分化成含有多巴胺能神经元和中等棘神经元的类器官来实现这一目标 中脑边缘通路并在两者之间产生功能性突触。该模型将通过暴露 培养神经元对可卡因,研究它们的分子、转录和表观遗传反应,并比较这些 对现有小鼠和人类数据的反应。通过这个模型,我们可以进一步理解关键的底层机制 有助于成瘾形成,可能导致药物开发的特定目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Rudibaugh其他文献

Thomas Rudibaugh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Rudibaugh', 18)}}的其他基金

Developing an Ex Vivo Model of the Mesolimbic Pathway for Studying Addiction Phenotypes
开发用于研究成瘾表型的中脑边缘通路的体外模型
  • 批准号:
    10156785
  • 财政年份:
    2021
  • 资助金额:
    $ 4.2万
  • 项目类别:
Developing an Ex Vivo Model of the Mesolimbic Pathway for Studying Addiction Phenotypes
开发用于研究成瘾表型的中脑边缘通路的体外模型
  • 批准号:
    10618833
  • 财政年份:
    2021
  • 资助金额:
    $ 4.2万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 4.2万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 4.2万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 4.2万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 4.2万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 4.2万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 4.2万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了