Predictive analytics for cognitive decline and Alzheimer’s disease
认知能力下降和阿尔茨海默病的预测分析
基本信息
- 批准号:10401440
- 负责人:
- 金额:$ 19.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAgingAlzheimer disease detectionAlzheimer&aposs DiseaseAlzheimer&aposs disease therapyAmericanArtificial IntelligenceBig DataBiometryClassificationClinicalClinical ResearchClinical TrialsCognitionCognitiveCognitive agingComplexDataData CollectionData SetData SourcesDecision MakingDementiaDevelopmentDimensionsDiseaseDisease ProgressionEarly DiagnosisElderlyEnrollmentEnsureFoundationsFutureGenetic MarkersGenetic RiskGoalsHealthcareImpaired cognitionIndividualInternationalInvestigationK-Series Research Career ProgramsLife StyleLongitudinal cohortMachine LearningMagnetic Resonance ImagingMeasurementMeasuresMentorsMentorshipMethodologyMethodsModelingNeurobiologyNeurodegenerative DisordersNeurologistNeurologyNeuropsychologyOutcomeParticipantPatientsPerformancePharmaceutical PreparationsPopulationPredictive AnalyticsPredictive ValuePrevention trialPrimary PreventionResearchResearch PersonnelSample SizeSamplingSecondary PreventionStatistical MethodsTechniquesTherapeutic EffectUnited StatesUniversitiesWashingtonWorkagedamyloid imagingarmbasebiological heterogeneitycareercareer developmentclinical biomarkersclinical decision-makingclinical heterogeneityclinical practicecognitive changecohortcomparativecomputational neurosciencecostdata harmonizationdata qualitydemographicsdiagnostic accuracyeffective therapyfeature selectionfollow-upfunctional declinefunctional outcomeshigh riskimaging biomarkerimprovedinnovationmachine learning frameworkmachine learning methodmachine learning modelmachine learning predictionmild cognitive impairmentmultidimensional dataneuroimagingnovelparticipant enrollmentpatient orientedpre-clinicalpredict clinical outcomepredictive modelingpredictive toolspreventprodromal Alzheimer&aposs diseaseprognosticresearch studyrisk predictionstructured datasuccess
项目摘要
Project Summary/Abstract
Alzheimer’s disease (AD), the most common cause of dementia in the elderly, is a major global
healthcare burden. However, there is still no effective disease modifying therapy for AD and
clinical trials with the aim of preventing or stabilizing cognitive impairment have largely failed.
Decision making in both clinical practice and research is highly dependent on practical predictive
tools, which can effectively predict cognitive or functional outcomes in individuals. Such models
could be potentially used in clinical research to boost the power of trials by enrollment of
participants who are most likely to show disease progression during the trial’s timeframe.
Alternatively, these models could be used to identifying individuals who would benefit from
primary or secondary prevention once there are effective treatments for AD. In this project, we
aim to provide a framework for practical prediction of cognitive decline with aging and prodromal
AD, by applying a novel ML framework to multiple dimensions of data (demographics, genetic risk
scores, neuropsychological measures, structural MRI, and amyloid imaging). Our ultimate goal is
to arrive at a new “Machine Learning predictive framework for aging and AD” (ML4AD), comprised
of dimensions each of which each will add incremental value to the predictive models, hence
increasing the performance of predictive models while keeping the costs and burden of research
at a minimum. The candidate for this Mentored Patient-Oriented Career Development Award
(K23), Dr. Ali Ezzati, is a Neurologist whose career goal is to develop predictive tools to help
research and clinical decision making in cognitive aging and dementia. The proposed research
will leverage the rich clinical and biomarker dataset available from several ongoing international
studies, but will also provide a unique avenue of investigation for the candidate. The candidate's
career development will benefit from close mentorship and scientific guidance of outstanding
investigators in aging/AD neurobiology (Dr. Lipton), machine learning and computational
neuroscience (Dr. Davatzikos), and biostatistics (Dr. Hall). The findings from this study will inform
future secondary prevention trials, in which sensitive indicators of early AD will be necessary to
identify high-risk subjects and track early clinical decline. This work will serve as the foundation
to move forward in independent research focusing on development of predictive tools in AD and
related neurodegenerative disorders.
Key words: Alzheimer’s Disease, Dementia, Mild Cognitive Impairment, Cognitive neurology,
Artificial Intelligence, Machine Learning, Predictive Analytics, Longitudinal Cohort, Big Data
项目总结/摘要
阿尔茨海默病(AD)是老年人痴呆症最常见的原因,是全球主要疾病
医疗负担。然而,对于AD仍然没有有效的疾病改善疗法,
旨在预防或稳定认知损害的临床试验基本上失败了。
临床实践和研究中的决策高度依赖于实际预测
工具,可以有效地预测个人的认知或功能结果。这样的模型
可以潜在地用于临床研究,通过招募
在试验期间最有可能显示疾病进展的参与者。
或者,这些模型可以用来识别那些从
一级或二级预防,一旦有有效的治疗AD。本课题
目的是提供一个框架,用于实际预测认知衰退与衰老和前驱期
AD,通过将新的ML框架应用于多个维度的数据(人口统计学,遗传风险
评分、神经心理学测量、结构MRI和淀粉样蛋白成像)。我们的最终目标是
为了达到一个新的“衰老和AD的机器学习预测框架”(ML 4AD),包括
每一个维度都将为预测模型增加增量值,因此
提高预测模型的性能,同时保持研究的成本和负担
至少是这样这个指导病人导向职业发展奖的候选人
(K23)Ali Ezzati博士是一名神经学家,他的职业目标是开发预测工具,
认知老化和痴呆症的研究和临床决策。拟议研究
将利用从几个正在进行的国际研究中获得的丰富的临床和生物标志物数据集,
研究,但也将为候选人提供一个独特的调查途径。候选人的
职业发展将受益于优秀人才的密切指导和科学指导
衰老/AD神经生物学研究人员(Lipton博士),机器学习和计算
神经科学(Davatzikos博士)和生物统计学(Hall博士)。这项研究的结果将告知
未来的二级预防试验,其中早期AD的敏感指标将是必要的,
识别高风险受试者并跟踪早期临床衰退。这项工作将作为基础
推进独立研究,重点是开发AD的预测工具,
相关的神经退行性疾病。
关键词:阿尔茨海默病,痴呆,轻度认知障碍,认知神经病学,
人工智能,机器学习,预测分析,纵向队列,大数据
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ali Ezzati其他文献
Ali Ezzati的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ali Ezzati', 18)}}的其他基金
Validation of the Remote Cognitive Aging and Alzheimer’s Disease REsearch (R-CARE) Toolbox for Diverse Populations
针对不同人群的远程认知衰老和阿尔茨海默病研究 (R-CARE) 工具箱的验证
- 批准号:
10737723 - 财政年份:2023
- 资助金额:
$ 19.76万 - 项目类别:
Predictive analytics for cognitive decline and Alzheimer’s disease
认知能力下降和阿尔茨海默病的预测分析
- 批准号:
9976247 - 财政年份:2020
- 资助金额:
$ 19.76万 - 项目类别:
Predictive analytics for cognitive decline and Alzheimer’s disease
认知能力下降和阿尔茨海默病的预测分析
- 批准号:
10626743 - 财政年份:2020
- 资助金额:
$ 19.76万 - 项目类别:
Predictive analytics for cognitive decline and Alzheimer’s disease
认知能力下降和阿尔茨海默病的预测分析
- 批准号:
10221583 - 财政年份:2020
- 资助金额:
$ 19.76万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 19.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 19.76万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 19.76万 - 项目类别:
Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 19.76万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 19.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 19.76万 - 项目类别:
Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 19.76万 - 项目类别:
Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 19.76万 - 项目类别:
Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
- 批准号:
23K20355 - 财政年份:2024
- 资助金额:
$ 19.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
- 批准号:
23K24782 - 财政年份:2024
- 资助金额:
$ 19.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)