Project A: Theoretical framework for studying causal inference in trial-based and continuous tasks
项目 A:研究基于试验和连续任务中因果推理的理论框架
基本信息
- 批准号:10400146
- 负责人:
- 金额:$ 75.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAgreementAnimalsAreaAuditoryBayesian ModelingBehaviorBehavioralBeliefBrainComplexControl AnimalDataDepth PerceptionElementsEventFoundationsGoalsHumanLinkModelingMonkeysMotionMotion PerceptionNeuronsPatternPerceptionPopulationProcessPsychophysicsRetinaReverse engineeringRunningSensorySignal TransductionTestingTextureTimeUncertaintyVisualWorkarea MTbasecausal modelexperienceneural circuitneural correlateneural patterningnovelobject motionreceptive fieldrelating to nervous systemresponseretinal imagingsensory input
项目摘要
Project Summary
The same pattern of neural activity can correspond to multiple events in the world. The brain resolves this
ambiguity by inferring which causal model best explains a sensory input pattern, and generating beliefs about
the sensory variables in this model. The neural basis of causal inference is difficult to study, however, because
this internal model is only partly accessible through behavior. Normative modeling provides a powerful way to
circumvent this problem: if these computations are close enough to optimal, beliefs inferred by normative
models can be used to identify potential neural correlates. This project's goal is to develop normative models of
the motion tasks investigated experimentally in Projects B and C, to generate trial-by-trial as well as dynamic
moment-by-moment predictions of key latent variables in the computation, and to investigate their neural
implementation using data collected in those projects. These models will be fit to behavioral data to determine
how the brain uses causal inference applied to retinal image motion to infer the animal's self-motion, to decide
whether or not the object is moving in the world, and to infer the object's velocity and depth. For the trial-based
tasks in Project B, Aim 1 will start with the generative model of sensory inputs and invert it to produce causal
inferences. Preliminary work has extended and unified previous efforts into a novel Bayesian model that uses
retinal motion and depth to segment visual scenes during self-motion. Psychophysical tests show that this
static model agrees with perceptual experience. This model will be used to predict neural responses in cortical
motion-processing areas MT and MSTd by assuming that these responses represent Bayesian posterior
beliefs. In Aim 2, because the real world is not static, the team will develop a dynamic model that describes
normative causal inference and inverse rational control in real-time. This model will predict which latent
variables the brain needs to track in the continuous, naturalistic tasks of Project C. Preliminary work shows that
a simplified model using dynamic causal inference can keep a running estimate of self-motion velocity and of
whether an object is stationary or moving. Aim 2 will extend this model to more complex sensory inputs and to
support object motion dynamics on timescales similar to those of inference. It will also develop a real-time
rational control model to generate quantitative hypotheses about the neural correlates of goal-directed control
for animals acting upon the percepts from causal inference. We will fit this model to observed behavior to
reverse-engineer animals' beliefs during goal-directed control. When the proposed work is complete, the static
model will link three physically interconnected variables—object motion, self motion, and depth—which may be
computed and represented in different neural populations, to predict how beliefs about these variables
influence each other and propagate across the brain. The dynamic model will extend the study of causal
inference to more realistic conditions, in which sensory data and beliefs evolve over time, to close the
understudied loop between perception and action.
项目摘要
相同的神经活动模式可以对应世界上的多个事件。大脑解决了这个问题
通过推断哪种因果模型最好地解释了感觉输入模式,并产生关于
这个模型中的感官变量。因果推理的神经基础很难研究,因为
这种内在模式只能部分地通过行为来实现。规范建模提供了一种强大的方法,
规避这个问题:如果这些计算足够接近最优,那么由规范推断的信念
模型可用于识别潜在的神经相关物。该项目的目标是开发规范模型,
在项目B和C中实验研究的运动任务,以产生一次又一次的试验以及动态的
计算中关键潜在变量的时刻预测,并研究其神经网络
利用这些项目中收集的数据进行实施。这些模型将适合行为数据,以确定
大脑如何利用因果推理应用于视网膜图像运动来推断动物的自我运动,
物体是否在世界上移动,并推断物体的速度和深度。对于基于试验的
项目B中的任务,目标1将从感官输入的生成模型开始,并将其转化为因果关系。
推论初步工作已经扩展和统一了以前的努力,成为一个新的贝叶斯模型,
视网膜运动和深度,以分割自我运动期间的视觉场景。心理物理测试表明,
静态模型符合感性经验。该模型将用于预测皮层神经元的反应,
运动处理区域MT和MSTd,假设这些响应代表贝叶斯后验
信仰在目标2中,由于真实的世界不是静态的,团队将开发一个动态模型,
规范因果推理和实时逆理性控制。这个模型将预测哪些潜在的
在C项目中,大脑需要跟踪连续的、自然的任务。初步工作表明,
使用动态因果推理的简化模型可以保持对自运动速度和
无论物体是静止的还是运动的。Aim 2将把这个模型扩展到更复杂的感觉输入,
在类似于推理的时间尺度上支持对象运动动力学。它还将开发一个实时
理性控制模型,以产生关于目标导向控制的神经相关物的定量假设
动物根据因果推理的感知而行动。我们将使该模型适合于观察到的行为,
在目标导向的控制过程中逆向工程动物的信念。当建议的工作完成时,静态
模型将连接三个物理上相互关联的变量-物体运动,自我运动和深度-这可能是
在不同的神经群体中计算和表示,以预测关于这些变量的信念如何
相互影响并在大脑中传播。动态模型将扩展因果关系的研究
推理到更现实的条件,其中感官数据和信念随着时间的推移而演变,以关闭
感知和行动之间的循环研究不足。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ralf Manfred Haefner其他文献
Ralf Manfred Haefner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ralf Manfred Haefner', 18)}}的其他基金
Project A: Theoretical framework for studying causal inference in trial-based and continuous tasks
项目 A:研究基于试验和连续任务中因果推理的理论框架
- 批准号:
10225403 - 财政年份:2020
- 资助金额:
$ 75.29万 - 项目类别:
Project A: Theoretical framework for studying causal inference in trial-based and continuous tasks
项目 A:研究基于试验和连续任务中因果推理的理论框架
- 批准号:
10615039 - 财政年份:2020
- 资助金额:
$ 75.29万 - 项目类别:
CRCNS: The neural basis of probabilistic inference in the visual system
CRCNS:视觉系统中概率推理的神经基础
- 批准号:
9769764 - 财政年份:2017
- 资助金额:
$ 75.29万 - 项目类别:
CRCNS: The neural basis of probabilistic inference in the visual system
CRCNS:视觉系统中概率推理的神经基础
- 批准号:
10005435 - 财政年份:2017
- 资助金额:
$ 75.29万 - 项目类别:
CRCNS: The neural basis of probabilistic inference in the visual system
CRCNS:视觉系统中概率推理的神经基础
- 批准号:
10254259 - 财政年份:2017
- 资助金额:
$ 75.29万 - 项目类别:
CRCNS: The neural basis of probabilistic inference in the visual system
CRCNS:视觉系统中概率推理的神经基础
- 批准号:
9472539 - 财政年份:2017
- 资助金额:
$ 75.29万 - 项目类别:
相似海外基金
A study for cross borders Indonesian nurses and care workers: Case of Japan-Indonesia Economic Partnership Agreement
针对跨境印度尼西亚护士和护理人员的研究:日本-印度尼西亚经济伙伴关系协定的案例
- 批准号:
22KJ0334 - 财政年份:2023
- 资助金额:
$ 75.29万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Challenges of the Paris Agreement Exposed by the Energy Shift by External Factors: The Case of Renewable Energy Policies in Japan, the U.S., and the EU
外部因素导致的能源转移对《巴黎协定》的挑战:以日本、美国和欧盟的可再生能源政策为例
- 批准号:
23H00770 - 财政年份:2023
- 资助金额:
$ 75.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
NSF-NOAA Interagency Agreement (IAA) for the Global Oscillations Network Group (GONG)
NSF-NOAA 全球振荡网络组 (GONG) 机构间协议 (IAA)
- 批准号:
2410236 - 财政年份:2023
- 资助金额:
$ 75.29万 - 项目类别:
Cooperative Agreement
Conditions for U.S. Agreement on the Closure of Contested Overseas Bases: Relations of Threat, Alliance and Base Alternatives
美国关于关闭有争议的海外基地协议的条件:威胁、联盟和基地替代方案的关系
- 批准号:
23K18762 - 财政年份:2023
- 资助金额:
$ 75.29万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
MSI Smart Manufacturing Data Hub – Open Calls Grant Funding Agreement
MSI 智能制造数据中心 – 公开征集赠款资助协议
- 批准号:
900240 - 财政年份:2023
- 资助金额:
$ 75.29万 - 项目类别:
Collaborative R&D
Continuation of Cooperative Agreement between U.S. Food and Drug Administration and S.C. Department of Health and Environmental Control (DHEC) for MFRPS Maintenance.
美国食品和药物管理局与南卡罗来纳州健康与环境控制部 (DHEC) 继续签订 MFRPS 维护合作协议。
- 批准号:
10829529 - 财政年份:2023
- 资助金额:
$ 75.29万 - 项目类别:
National Ecological Observatory Network Governing Cooperative Agreement
国家生态观测站网络治理合作协议
- 批准号:
2346114 - 财政年份:2023
- 资助金额:
$ 75.29万 - 项目类别:
Cooperative Agreement
The Kansas Department of Agriculture's Flexible Funding Model Cooperative Agreement for MFRPS Maintenance, FPTF, and Special Project.
堪萨斯州农业部针对 MFRPS 维护、FPTF 和特别项目的灵活资助模式合作协议。
- 批准号:
10828588 - 财政年份:2023
- 资助金额:
$ 75.29万 - 项目类别:
Robust approaches for the analysis of agreement between clinical measurements: development of guidance and software tools for researchers
分析临床测量之间一致性的稳健方法:为研究人员开发指南和软件工具
- 批准号:
MR/X029301/1 - 财政年份:2023
- 资助金额:
$ 75.29万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Linguistic transfer in a contact variety of Spanish: Gender agreement production and attitudes
博士论文研究:西班牙语接触变体中的语言迁移:性别协议的产生和态度
- 批准号:
2234506 - 财政年份:2023
- 资助金额:
$ 75.29万 - 项目类别:
Standard Grant