Project A: Theoretical framework for studying causal inference in trial-based and continuous tasks
项目 A:研究基于试验和连续任务中因果推理的理论框架
基本信息
- 批准号:10615039
- 负责人:
- 金额:$ 58.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AgreementAnimalsAreaAuditoryBayesian ModelingBehaviorBehavioralBeliefBrainComplexControl AnimalDataDepth PerceptionElementsEventFoundationsGoalsHumanLinkModelingMonkeysMotionMotion PerceptionNeuronsPatternPerceptionPopulationProcessPsychophysicsRetinaReverse engineeringRunningSensorySignal TransductionTestingTextureTimeUncertaintyVisualWorkarea MTcausal modelexperienceneuralneural circuitneural correlateneural patterningnovelobject motionreceptive fieldresponseretinal imagingsensory input
项目摘要
Project Summary
The same pattern of neural activity can correspond to multiple events in the world. The brain resolves this
ambiguity by inferring which causal model best explains a sensory input pattern, and generating beliefs about
the sensory variables in this model. The neural basis of causal inference is difficult to study, however, because
this internal model is only partly accessible through behavior. Normative modeling provides a powerful way to
circumvent this problem: if these computations are close enough to optimal, beliefs inferred by normative
models can be used to identify potential neural correlates. This project's goal is to develop normative models of
the motion tasks investigated experimentally in Projects B and C, to generate trial-by-trial as well as dynamic
moment-by-moment predictions of key latent variables in the computation, and to investigate their neural
implementation using data collected in those projects. These models will be fit to behavioral data to determine
how the brain uses causal inference applied to retinal image motion to infer the animal's self-motion, to decide
whether or not the object is moving in the world, and to infer the object's velocity and depth. For the trial-based
tasks in Project B, Aim 1 will start with the generative model of sensory inputs and invert it to produce causal
inferences. Preliminary work has extended and unified previous efforts into a novel Bayesian model that uses
retinal motion and depth to segment visual scenes during self-motion. Psychophysical tests show that this
static model agrees with perceptual experience. This model will be used to predict neural responses in cortical
motion-processing areas MT and MSTd by assuming that these responses represent Bayesian posterior
beliefs. In Aim 2, because the real world is not static, the team will develop a dynamic model that describes
normative causal inference and inverse rational control in real-time. This model will predict which latent
variables the brain needs to track in the continuous, naturalistic tasks of Project C. Preliminary work shows that
a simplified model using dynamic causal inference can keep a running estimate of self-motion velocity and of
whether an object is stationary or moving. Aim 2 will extend this model to more complex sensory inputs and to
support object motion dynamics on timescales similar to those of inference. It will also develop a real-time
rational control model to generate quantitative hypotheses about the neural correlates of goal-directed control
for animals acting upon the percepts from causal inference. We will fit this model to observed behavior to
reverse-engineer animals' beliefs during goal-directed control. When the proposed work is complete, the static
model will link three physically interconnected variables—object motion, self motion, and depth—which may be
computed and represented in different neural populations, to predict how beliefs about these variables
influence each other and propagate across the brain. The dynamic model will extend the study of causal
inference to more realistic conditions, in which sensory data and beliefs evolve over time, to close the
understudied loop between perception and action.
项目摘要
相同的神经活动模式可以对应世界上的多个事件。大脑解决了这个问题
通过推断哪种因果模型最好地解释了感觉输入模式,并产生关于
这个模型中的感官变量。因果推理的神经基础很难研究,因为
这种内在模式只能部分地通过行为来实现。规范建模提供了一种强大的方法,
规避这个问题:如果这些计算足够接近最优,那么由规范推断的信念
模型可用于识别潜在的神经相关物。该项目的目标是开发规范模型,
在项目B和C中实验研究的运动任务,以产生一次又一次的试验以及动态的
计算中关键潜在变量的时刻预测,并研究其神经网络
利用这些项目中收集的数据进行实施。这些模型将适合行为数据,以确定
大脑如何使用应用于视网膜图像运动的因果推理来推断动物的自我运动,以决定
物体是否在世界上移动,并推断物体的速度和深度。对于基于试验的
项目B中的任务,目标1将从感官输入的生成模型开始,并将其转化为因果关系。
推论初步工作已经扩展和统一了以前的努力,成为一个新的贝叶斯模型,
视网膜运动和深度,以分割自我运动期间的视觉场景。心理物理测试表明,
静态模型符合感性经验。该模型将用于预测皮层神经元的反应,
运动处理区域MT和MSTd,假设这些响应代表贝叶斯后验
信仰在目标2中,由于真实的世界不是静态的,团队将开发一个动态模型,
规范因果推理和实时逆理性控制。这个模型将预测哪些潜在的
大脑在项目C的连续、自然主义任务中需要跟踪的变量。初步工作表明,
使用动态因果推理的简化模型可以保持对自运动速度和
无论物体是静止的还是运动的。Aim 2将把这个模型扩展到更复杂的感觉输入,
在类似于推理的时间尺度上支持对象运动动力学。它还将开发一个实时
理性控制模型,以产生关于目标导向控制的神经相关物的定量假设
动物根据因果推理的感知而行动。我们将使该模型适合于观察到的行为,
在目标导向的控制过程中逆向工程动物的信念。当建议的工作完成时,静态
模型将连接三个物理上相互关联的变量-物体运动,自我运动和深度-这可能是
在不同的神经群体中计算和表示,以预测关于这些变量的信念如何
相互影响并在大脑中传播。动态模型将扩展因果关系的研究
推理到更现实的条件,其中感官数据和信念随着时间的推移而演变,以关闭
感知和行动之间的循环研究不足。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ralf Manfred Haefner其他文献
Ralf Manfred Haefner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ralf Manfred Haefner', 18)}}的其他基金
Project A: Theoretical framework for studying causal inference in trial-based and continuous tasks
项目 A:研究基于试验和连续任务中因果推理的理论框架
- 批准号:
10225403 - 财政年份:2020
- 资助金额:
$ 58.05万 - 项目类别:
Project A: Theoretical framework for studying causal inference in trial-based and continuous tasks
项目 A:研究基于试验和连续任务中因果推理的理论框架
- 批准号:
10400146 - 财政年份:2020
- 资助金额:
$ 58.05万 - 项目类别:
CRCNS: The neural basis of probabilistic inference in the visual system
CRCNS:视觉系统中概率推理的神经基础
- 批准号:
9769764 - 财政年份:2017
- 资助金额:
$ 58.05万 - 项目类别:
CRCNS: The neural basis of probabilistic inference in the visual system
CRCNS:视觉系统中概率推理的神经基础
- 批准号:
10005435 - 财政年份:2017
- 资助金额:
$ 58.05万 - 项目类别:
CRCNS: The neural basis of probabilistic inference in the visual system
CRCNS:视觉系统中概率推理的神经基础
- 批准号:
10254259 - 财政年份:2017
- 资助金额:
$ 58.05万 - 项目类别:
CRCNS: The neural basis of probabilistic inference in the visual system
CRCNS:视觉系统中概率推理的神经基础
- 批准号:
9472539 - 财政年份:2017
- 资助金额:
$ 58.05万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 58.05万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 58.05万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 58.05万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 58.05万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 58.05万 - 项目类别:
Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 58.05万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 58.05万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
- 批准号:
23KK0126 - 财政年份:2023
- 资助金额:
$ 58.05万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 58.05万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 58.05万 - 项目类别:
Training Grant