Estimating Mediation Effects in Prevention Studies
估计预防研究中的中介效应
基本信息
- 批准号:10401467
- 负责人:
- 金额:$ 34.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressApplications GrantsBayesian MethodBehavioral MechanismsBig DataBiological ModelsCommunicationComplexConsultationsDataData AnalysesData CollectionDevelopmentEcological momentary assessmentEducational workshopEffectivenessEtiologyEvaluationFeedbackFundingGrantIndividualIndividual DifferencesInterventionInvestigationLinkLiteratureMachine LearningMeasurementMeasuresMediatingMediationMediator of activation proteinMeta-AnalysisMethodologyMethodsModelingNational Institute of Drug AbuseOutcomePersonsPreventionPrevention ResearchPrevention programPrincipal InvestigatorProceduresProcessPsychometricsPublicationsRandomizedRecommendationResearchResearch DesignResearch MethodologyResearch PersonnelResidual stateStatistical Data InterpretationStatistical MethodsSubgroupTestingTimeTranslatingUnited States National Institutes of HealthWorkbasecomputer programcostdata spacedesigndynamic systemimprovedinnovationinterestlongitudinal designmodel designmultilevel analysisnovel strategiesprogramssimulationsubstance use treatmenttheoriestherapy designtooltreatment researchweb site
项目摘要
The purpose of this competing continuation grant proposal is to develop, evaluate and apply
methodological and statistical procedures to investigate how prevention programs change outcome
variables. These mediation analyses assess the link between program effects on the constructs targeted
by a prevention program and effects on the outcome. As noted by many researchers and federal
agencies, mediation analyses identify the most effective program components and increase
understanding of the underlying mechanisms leading to changing outcome variables. Information from
mediation analysis can make interventions more powerful, more efficient, and shorter. The P. I. of this
grant received a one-year NIDA small grant and four multi-year grants to develop and evaluate mediation
analysis in prevention research. This work led to many publications and innovations. The proposed
five-year continuation focuses on the further development and refinement of exciting new mediation
analysis statistical developments. Four statistical topics represent next steps in this research and include
analytical and simulation research as well as applications to etiological and prevention data. The work
expands on our development of causal mediation and Bayesian mediation methods that hold great
promise for mediation analysis. In Study 1, practical causal mediation and Bayesian mediation analyses
for research designs are developed and evaluated. This approach will clarify methods and develop
approaches for dealing with violation of testable and untestable assumptions. Study 2 investigates
important measurement issues for the investigation of mediation. This work will focus on methods to
identify critical facets of mediating variables, approaches to understanding whether mediators and
outcomes are redundant, and develop methods for studies with big data. Study 3 continues the
development and evaluation of new longitudinal mediation methods for ecological momentary assessment
data and other studies with massive data collection. These new methods promise to more accurately
model change over time for both individuals and groups of individuals. Study 4 develops methods to
uncover subgroups in mediation analysis including causal mediation methods, multilevel models, and new
approaches based on residuals for identifying individuals for whom mediating processes differ in
effectiveness from other individuals. For each study, we will investigate unique issues with mediation
analysis of prevention data including methods for small N and also massive data collection (big data), the
RcErLitEicVaANl rCoEle(Soeef imnsetruacstiounrse):ment for mediating mechanisms, and the application of the growing literature on
causal methods and Bayesian methods. Study 5 applies new statistical methods to data from several NIH
The project further develops a method, statistical mediation analysis, that extracts more information from
funded prevention studies providing important feedback about the usefulness of the methods. Study 6
research. Mediation analysis explains how and why prevention and treatments are successful. Mediation
disseminates new information about mediation analysis through our website and other media, by
analysis improves prevention and treatment so that their effects are greater and even cost less.
communication with researchers, and publications from the project.
这一竞争性续批提案的目的是开发、评估和应用
调查预防方案如何改变结果的方法和统计程序
变量。这些中介分析评估计划对目标构造的影响之间的联系
通过预防计划和对结果的影响。正如许多研究人员和联邦政府所指出的那样
机构、调解分析确定最有效的计划组成部分并增加
了解导致结果变量变化的潜在机制。信息来自
调解分析可以使干预更有力、更有效、更短。这件事的私人侦探
格兰特收到了一笔为期一年的NIDA小额赠款和四笔多年期赠款,用于开发和评估调解
预防研究中的分析。这项工作导致了许多出版物和创新。建议数
五年延续的重点是进一步发展和完善令人振奋的新调解
分析统计动态。四个统计主题代表了这项研究的下一步,包括
分析和模拟研究以及病因学和预防数据的应用。这项工作
扩展了我们对因果调解和贝叶斯调解方法的发展,这两种方法对
承诺进行调解分析。在研究1中,实际因果调解和贝叶斯调解分析
用于研究设计的开发和评估。这一方法将澄清方法并开发
处理违反可测试和不可测试假设的方法。研究2调查
调解调查的重要计量问题。这项工作将集中在以下方法上
确定中介变量的关键方面,了解调解人和
结果是多余的,并为大数据研究开发方法。研究3继续
用于生态瞬时评估的新型纵向调解方法的开发与评价
数据和其他大量数据收集的研究。这些新方法承诺更准确地
随着时间的推移,个人和个人群体的模型都会发生变化。研究4开发了方法来
揭示调解分析中的子组,包括因果调解方法、多层次模型和新的
基于残差的方法识别调解过程不同的个体
来自其他个人的有效性。对于每项研究,我们将调查与调解有关的独特问题
分析预防数据,包括小N方法和海量数据收集(大数据),
RcErLitEicVaAnl rCoEle(Soeef Imnsetruacstiunrse):中介机制,以及越来越多的文献在
因果方法和贝叶斯方法。研究5将新的统计方法应用于几个美国国立卫生研究院的数据
该项目进一步开发了一种统计调解分析方法,该方法从
资助的预防研究就这些方法的有效性提供了重要的反馈。研究6
研究。调解分析解释了预防和治疗取得成功的方式和原因。调解
通过我们的网站和其他媒体传播有关调解分析的新信息,由
分析改进了预防和治疗,因此它们的影响更大,甚至成本更低。
与研究人员的交流,以及该项目的出版物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David P MacKinnon其他文献
David P MacKinnon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David P MacKinnon', 18)}}的其他基金
Estimating Mediation Effects in Prevention Studies
估计预防研究中的中介效应
- 批准号:
10651627 - 财政年份:2020
- 资助金额:
$ 34.93万 - 项目类别:
Prevention of Adolescent Driving Under the Influence
预防青少年酒后驾驶
- 批准号:
6622022 - 财政年份:2002
- 资助金额:
$ 34.93万 - 项目类别:
Prevention of Adolescent Driving Under the Influence
预防青少年酒后驾驶
- 批准号:
6438317 - 财政年份:2002
- 资助金额:
$ 34.93万 - 项目类别:
ANALYSIS OF TEAM-BASED SUBSTANCE ABUSE PREVENTION
基于团队的药物滥用预防分析
- 批准号:
6132573 - 财政年份:1999
- 资助金额:
$ 34.93万 - 项目类别:
ANALYSIS OF TEAM-BASED SUBSTANCE ABUSE PREVENTION
基于团队的药物滥用预防分析
- 批准号:
6402535 - 财政年份:1999
- 资助金额:
$ 34.93万 - 项目类别:
ESTIMATING MEDIATION EFFECTS IN PREVENTION STUDIES
估计预防研究中的中介效应
- 批准号:
2443500 - 财政年份:1996
- 资助金额:
$ 34.93万 - 项目类别:
Estimating Mediation Effects in Prevention Studies
估计预防研究中的中介效应
- 批准号:
9086292 - 财政年份:1996
- 资助金额:
$ 34.93万 - 项目类别:
Estimating Mediation Effects in Prevention Studies
估计预防研究中的中介效应
- 批准号:
6680652 - 财政年份:1996
- 资助金额:
$ 34.93万 - 项目类别:
Estimating Mediation Effects in Prevention Studies
估计预防研究中的中介效应
- 批准号:
7107310 - 财政年份:1996
- 资助金额:
$ 34.93万 - 项目类别:
Estimating Mediation Effects in Prevention Studies
估计预防研究中的中介效应
- 批准号:
7872772 - 财政年份:1996
- 资助金额:
$ 34.93万 - 项目类别:














{{item.name}}会员




