Hidden Hearing Loss: A View from the Brain

隐性听力损失:大脑的视角

基本信息

  • 批准号:
    10400159
  • 负责人:
  • 金额:
    $ 50.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-07 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Abstract The concept of “hidden” hearing loss challenges the idea that temporary threshold shifts (TTS) reflect a return to normal hearing. Recent studies indicate that after noise-exposure that produces TTS, and thus clinically 'normal' audiograms, there is nonetheless permanent damage to auditory nerve fiber (ANF) synapses with cochlear inner hair cells. Hidden hearing loss is a potential major health issue, as human temporal bone and ABR studies suggest it is common in humans. The remaining perceptual deficits in humans with clinically normal audiograms reflect temporal coding problems likely due to loss of the high threshold, low spontaneous rate ANFs, which are preferentially affected after TTS. The primary central targets of high-threshold ANFs reside in the small cell cap (SCC) of the cochlear nucleus (CN). High-threshold ANFs and their SCC targets display large dynamic ranges and superior suprathreshold tuning and temporal coding, which are essential for speech perception in noisy environments. The SCC occupies a large proportion of the CN in humans and is therefore poised to play a major role in central mechanisms of hidden hearing loss. The SCC is unique also as a putative recipient and projection area of medial olivocochlear (MOC) neurons. The overall hypothesis of this proposal is that the SCC plays a major role in suprathreshold sound coding and that this coding is highly susceptible to degradation by hidden hearing loss. The goal of this series of studies is to elucidate the cochlea- SCC-MOC circuit in normal and noise-damaged animals with hidden hearing loss, using state-of-the-art optogenetics, multichannel single unit physiology, tract tracing and sophisticated immunohistochemical methods.
摘要 隐蔽性听力损失的概念挑战了临时性阈值漂移(TTS)反映恢复的观点 恢复正常听力。最近的研究表明,在噪声暴露后会产生TTS,因此在临床上 尽管听力图“正常”,但听神经纤维(ANF)突触仍有永久性损害 耳蜗内毛细胞。隐性听力损失是一个潜在的主要健康问题,因为人类的颞骨和 ABR研究表明,这在人类中很常见。人类临床上剩余的知觉缺陷 正常的听力图反映出时间编码问题,可能是由于失去了高阈值、低自发 对在TTS后优先受影响的ANF进行评级。高阈值ANF的主要中心靶点 位于耳蜗核(CN)的小细胞帽(SCC)内。高阈值ANF及其SCC靶点 显示大动态范围和卓越的超阈值调谐和时间编码,这对于 在嘈杂环境中的语音感知。鳞状细胞癌在人类CN中占有很大比例,并且是 因此有望在隐性听力损失的中枢机制中发挥重要作用。SCC也是独一无二的 内侧橄榄耳蜗区(MOC)神经元的假定受体和投射区。对此的总体假设是 建议SCC在超阈值声音编码中起主要作用,并且这种编码是高度 容易因隐性听力损失而退化。这一系列研究的目的是阐明耳蜗-- 在正常和噪声损伤的隐匿性听力损失动物中,使用最先进的SCC-MOC电路 光遗传学、多通道单单位生理学、轨迹追踪和复杂的免疫组织化学 方法:研究方法。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Olivocochlear projections contribute to superior intensity coding in cochlear nucleus small cells.
  • DOI:
    10.1113/jp282262
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Hockley, Adam;Wu, Calvin;Shore, Susan E.
  • 通讯作者:
    Shore, Susan E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SUSAN E SHORE其他文献

SUSAN E SHORE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SUSAN E SHORE', 18)}}的其他基金

Hidden Hearing Loss: A View from the Brain
隐性听力损失:大脑的视角
  • 批准号:
    10174907
  • 财政年份:
    2018
  • 资助金额:
    $ 50.58万
  • 项目类别:
Hidden Hearing Loss: A View from the Brain
隐性听力损失:大脑的视角
  • 批准号:
    9925757
  • 财政年份:
    2018
  • 资助金额:
    $ 50.58万
  • 项目类别:
Reversing Synchronized Brain Circuits with Targeted Auditory-Somatosensory Stimulation to Treat Phantom Percepts
通过有针对性的听觉体感刺激逆转同步大脑回路来治疗幻觉
  • 批准号:
    9390327
  • 财政年份:
    2017
  • 资助金额:
    $ 50.58万
  • 项目类别:
Function of trigeminal pathways to the cochlear nucleus
通向耳蜗核的三叉神经通路的功能
  • 批准号:
    7856736
  • 财政年份:
    2009
  • 资助金额:
    $ 50.58万
  • 项目类别:
Function of the Trigeminal Ganglion-Cochlear Nucleus
三叉神经节-耳蜗核的功能
  • 批准号:
    6321182
  • 财政年份:
    2001
  • 资助金额:
    $ 50.58万
  • 项目类别:
Function of trigeminal pathways to the cochlear nucleus
通向耳蜗核的三叉神经通路的功能
  • 批准号:
    7738507
  • 财政年份:
    2001
  • 资助金额:
    $ 50.58万
  • 项目类别:
Function of trigeminal pathways to the cochlear nucleus
通向耳蜗核的三叉神经通路的功能
  • 批准号:
    7194660
  • 财政年份:
    2001
  • 资助金额:
    $ 50.58万
  • 项目类别:
Function of Somatosensory Pathways to Cochlear Nucleus
耳蜗核体感通路的功能
  • 批准号:
    8420418
  • 财政年份:
    2001
  • 资助金额:
    $ 50.58万
  • 项目类别:
Function of the Trigeminal Ganglion-Cochlear Nucleus
三叉神经节-耳蜗核的功能
  • 批准号:
    6859370
  • 财政年份:
    2001
  • 资助金额:
    $ 50.58万
  • 项目类别:
Function of the Trigeminal Ganglion-Cochlear Nucleus
三叉神经节-耳蜗核的功能
  • 批准号:
    6516285
  • 财政年份:
    2001
  • 资助金额:
    $ 50.58万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 50.58万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 50.58万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 50.58万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 50.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 50.58万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 50.58万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 50.58万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 50.58万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 50.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 50.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了