Cancer Prevention and Control (CAPAC) Research Training Program
癌症预防与控制 (CAPAC) 研究培训计划
基本信息
- 批准号:10405752
- 负责人:
- 金额:$ 8.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsArtificial IntelligenceCancer ControlCancer Control ResearchCause of DeathClassificationCompetenceComprehensive Cancer CenterDataData ScienceData SetEthnic OriginEvaluationFAIR principlesGrantHealthHealth OccupationsHispanicsHourHuman Resources DevelopmentInstitutionMachine LearningMalignant NeoplasmsMentorsMethodsMinority GroupsModelingParentsParticipantPhasePredictive Cancer ModelProcessPuerto RicoPythonsResearchResearch PersonnelStudentsSupervisionTechniquesTestingTrainingTraining ProgramsUnited StatesUniversitiesbasecancer diagnosiscancer health disparitycancer preventioncancer therapyconditioningdata wranglingexperienceinterestmodel buildingonline courseparent grantracial and ethnicrecruitskillssummer researchtool
项目摘要
Summary
Cancer is the leading cause of death among Hispanics, the largest racial/ethnic minority group in the United
States and disproportionately affected by cancer health disparities. Despite this disparity, cancer datasets,
specifically for Hispanic populations, are not as available as for other ethnicities. Given the need for cancer
health disparities research with a focus on Hispanic health, there is a need for applying Artificial
Intelligence/Machine Learning (AI/ML) approaches in this field, and an urgency on making Hispanics cancer
datasets Findable, Accessible, Interoperable, and Reusable (FAIR) and AI/ML -ready. The Cancer Prevention
and Control Research (CAPAC) Training Program of the University of Puerto Rico Comprehensive Cancer
Center (UPRCCC), recruits graduate and health professions students for a hands-on summer research
experience in PR. This supplement aims to expand the scope of the parent CAPAC training Program and prepare
research workforce on 1) the techniques and approaches to manipulate and pre-process Hispanics cancer
datasets to make them FAIR and AI/ML ready, and on 2) the available methods for developing ML-based models
to analyze these data and create predictive models for cancer diagnosis and treatments with a focus on Hispanic
datasets. We will develop an online course based on the data science project lifecycle, which includes four
phases: 1) Data Understanding/ Data Pre-processing; 2) Data Wrangling; 3) Model Planning; and 4) Model
Building. This 24-hour online asynchronous course will be organized in modules within two components.
Component 1 will include the following topics: fundamentals of cancer data types, identifying and understanding
cancer datasets, data science concepts and project lifecycles; basic programming concepts; programming with
Python; exploring, pre-processing, and conditioning the cancer datasets; performing Extract, Transform, Load
(ETL) prior to AI/ML modelling. Component 2 will add topics such as: principles of AI/ML; variable correlations
and associations; determining datasets for training and testing; supervised and unsupervised ML approaches;
classification, regression and ensembles ML-algorithms; familiarizing with ML tools. To develop our course,
examples and projects, we will use Hispanics cancer datasets from the US and PR. The course would
be voluntary and free for interested participants (capacity of 40 trainees), including CAPAC participants (alumni)
and applicants, CAPAC mentors, as well as trainees and research staff from collaborating grants/institutions.
Student’s gained skills will be evaluated with quizzes and a final practical project, while the course will be
evaluated with the support of the evaluation component of the parent grant. This supplement will impact the
development of human resources (e.g. students, researchers, clinicians) from the United States and Puerto Rico
with the competencies and skills needed to make FAIR Hispanics cancer datasets and to apply AI/ML
approaches for creating ML-based predictive models for cancer.
概括
癌症是西班牙裔美国人的首要死因,西班牙裔美国人是美国最大的种族/族裔群体
各州受癌症健康差异的影响尤为严重。尽管存在这种差异,癌症数据集,
特别是针对西班牙裔人口,不像其他种族那样可用。鉴于癌症的需要
健康差异研究重点关注西班牙裔健康,需要应用人工
该领域的智能/机器学习 (AI/ML) 方法以及使西班牙裔患癌症的紧迫性
数据集可查找、可访问、可互操作和可重用 (FAIR) 和 AI/ML 就绪。癌症预防
波多黎各大学综合癌症与控制研究(CAPAC)培训项目
中心(UPRCCC),招募研究生和卫生专业学生进行暑期实践研究
公关经验。本补充材料旨在扩大家长 CAPAC 培训计划的范围并为
1)操纵和预处理西班牙裔癌症的技术和方法的研究人员
数据集,使它们为 FAIR 和 AI/ML 做好准备,以及 2)开发基于 ML 的模型的可用方法
分析这些数据并创建癌症诊断和治疗的预测模型,重点关注西班牙裔
数据集。我们将开发基于数据科学项目生命周期的在线课程,其中包括四个
阶段:1)数据理解/数据预处理; 2)数据整理; 3)车型规划; 4) 型号
建筑。这个 24 小时在线异步课程将分为两个部分的模块。
第 1 部分将包括以下主题:癌症数据类型的基础知识、识别和理解
癌症数据集、数据科学概念和项目生命周期;基本编程概念;编程与
Python;探索、预处理和调整癌症数据集;执行提取、转换、加载
(ETL) 在 AI/ML 建模之前。第 2 部分将添加以下主题:AI/ML 原理;变量相关性
和协会;确定训练和测试的数据集;有监督和无监督的机器学习方法;
分类、回归和集成 ML 算法;熟悉机器学习工具。为了开发我们的课程,
示例和项目,我们将使用来自美国和波多黎各的西班牙裔癌症数据集。该课程将
感兴趣的参与者自愿且免费(可容纳 40 名学员),包括 CAPAC 参与者(校友)
申请人、CAPAC 导师以及来自合作资助机构/机构的实习生和研究人员。
学生获得的技能将通过测验和最终实践项目进行评估,而课程将
在母公司补助金评估部分的支持下进行评估。此补充将影响
来自美国和波多黎各的人力资源开发(例如学生、研究人员、临床医生)
具备制作 FAIR 西班牙裔癌症数据集和应用 AI/ML 所需的能力和技能
创建基于机器学习的癌症预测模型的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANA Patricia ORTIZ其他文献
ANA Patricia ORTIZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANA Patricia ORTIZ', 18)}}的其他基金
Characterization of the cervical fungal communities modulating high-risk HPV infections in Hispanic Women Living with HIV (WLWH)
调节西班牙裔女性 HIV 感染者 (WLWH) 高危 HPV 感染的宫颈真菌群落特征
- 批准号:
10533625 - 财政年份:2022
- 资助金额:
$ 8.39万 - 项目类别:
Mechanisms of disparities in the natural history of oral and oropharyngeal HPV infection among persons living with HIV: the CAMPO oral cohort study
HIV 感染者口腔和口咽 HPV 感染自然史差异的机制:CAMPO 口腔队列研究
- 批准号:
10677502 - 财政年份:2022
- 资助金额:
$ 8.39万 - 项目类别:
Cancer Prevention and Control (CAPAC) Research Training Program
癌症预防与控制 (CAPAC) 研究培训计划
- 批准号:
10681355 - 财政年份:2019
- 资助金额:
$ 8.39万 - 项目类别:
California-Mexico-Puerto Rico Partnership (CAMPO) Center for Prevention of HPV-related Cancer in HIV+ Populations
加州-墨西哥-波多黎各伙伴关系 (CAMPO) 艾滋病毒人群中 HPV 相关癌症预防中心
- 批准号:
10411453 - 财政年份:2019
- 资助金额:
$ 8.39万 - 项目类别:
Cancer Prevention and Control (CAPAC) Research Training Program
癌症预防与控制 (CAPAC) 研究培训计划
- 批准号:
9791794 - 财政年份:2019
- 资助金额:
$ 8.39万 - 项目类别:
Cancer Prevention and Control (CAPAC) Research Training Program
癌症预防与控制 (CAPAC) 研究培训计划
- 批准号:
10478110 - 财政年份:2019
- 资助金额:
$ 8.39万 - 项目类别:
Cervical Cancer, Aging, and Psychological Distress among HIV-positive Women in Mexico and Puerto Rico: An exploratory sub-study of the CAMPO Consortium Clinical Trials Program
墨西哥和波多黎各艾滋病毒阳性女性的宫颈癌、衰老和心理困扰:CAMPO 联盟临床试验计划的探索性子研究
- 批准号:
10310982 - 财政年份:2019
- 资助金额:
$ 8.39万 - 项目类别:
California-Mexico-Puerto Rico Partnership (CAMPO) Center for Prevention of HPV-related Cancer in HIV+ Populations
加州-墨西哥-波多黎各伙伴关系 (CAMPO) 艾滋病毒人群中 HPV 相关癌症预防中心
- 批准号:
10737846 - 财政年份:2019
- 资助金额:
$ 8.39万 - 项目类别:
California-Mexico-Puerto Rico Partnership (CAMPO) Center for Prevention of HPV-related Cancer in HIV+ Populations
加州-墨西哥-波多黎各伙伴关系 (CAMPO) 艾滋病毒人群中 HPV 相关癌症预防中心
- 批准号:
10469352 - 财政年份:2019
- 资助金额:
$ 8.39万 - 项目类别:
CAMPO Global Cancer Health Disparities Supplement
CAMPO 全球癌症健康差异补充资料
- 批准号:
10166395 - 财政年份:2019
- 资助金额:
$ 8.39万 - 项目类别:
相似海外基金
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
- 批准号:
2236926 - 财政年份:2023
- 资助金额:
$ 8.39万 - 项目类别:
Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
- 批准号:
LP210200798 - 财政年份:2023
- 资助金额:
$ 8.39万 - 项目类别:
Linkage Projects
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
- 批准号:
2765246 - 财政年份:2022
- 资助金额:
$ 8.39万 - 项目类别:
Studentship
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 8.39万 - 项目类别:
Standard Grant
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
- 批准号:
ES/R00983X/2 - 财政年份:2022
- 资助金额:
$ 8.39万 - 项目类别:
Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 8.39万 - 项目类别:
Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
- 批准号:
10683803 - 财政年份:2022
- 资助金额:
$ 8.39万 - 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
- 批准号:
460558 - 财政年份:2022
- 资助金额:
$ 8.39万 - 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
- 批准号:
RGPIN-2022-04417 - 财政年份:2022
- 资助金额:
$ 8.39万 - 项目类别:
Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
- 批准号:
10544772 - 财政年份:2022
- 资助金额:
$ 8.39万 - 项目类别:














{{item.name}}会员




