Development of a Machine Learning Model for Liver Transplantation

肝移植机器学习模型的开发

基本信息

  • 批准号:
    10406282
  • 负责人:
  • 金额:
    $ 8.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Currently, there are nearly 13,000 patients waitlisted for liver transplant, yet only two-thirds will receive a transplant, and in 2018 approximately 2,500 patients died or were removed from the waitlist due to medical deterioration. This shortage of donor livers available for transplant has led to the use of marginal livers – livers that are higher risk than typical donor livers but may be safely transplantable in carefully selected recipients. These include older donors (>70 years), steatotic livers, and livers procured through donation after cardiac death. Due to their riskiness, these marginal livers are often declined, yet as many as 84% of patients who died on the transplant waitlist declined one or more marginal livers prior to death. In light of this, certain waitlisted candidates might have derived a survival benefit from undergoing transplantation with a marginal organ rather than remaining on the waitlist (i.e. they would have survived longer after a transplant with a marginal liver than they would have survived on the waitlist). Currently, decisions about whether a particular marginal liver is suitable for a particular candidate are based on clinical gestalt or simple subgroup analysis using traditional regression models, which likely do not fully approximate the complex interactions between donor, recipient, and transplant factors. To account for this, we will utilize machine learning (which can incorporate complex, higher-order interactions) to predict whether a specific candidate would derive a survival benefit from undergoing transplantation with a specific marginal liver, and interview transplant candidates and surgeons to understand how best to translate these predictions into an immediately clinically-useful decision aid. To accomplish this, we will leverage Scientific Registry of Transplant Recipient (SRTR) national data (n=293,140) and use a machine technique (random forests) to address the following aims: (1) To predict waitlist survival for waitlisted liver transplant candidates; (2) To predict post-transplant survival for liver transplant recipients of a marginal liver; and (3) To create a decision aid that compares predicted waitlist survival and predicted post-transplant survival for a specific transplant candidates with marginal liver. These aims are highly feasible given our group’s expertise in liver transplantation, analysis of national registry data, and machine learning techniques. We hypothesize that utilizing SRTR and machine learning, we can accurately predict post-transplant survival for a particular candidate with a particular marginal liver, as well as waitlist survival for that same candidate without a liver. We also hypothesize that our decision aid could be utilized in real-time to inform clinical decision-making. If the proposed aims are achieved, our decision aid could be utilized to improve clinical practice by bringing high-quality risk prediction directly to patients and transplant professionals to directly inform the real-time clinical decision of whether a candidate should undergo transplant with a marginal liver.
项目总结/摘要 目前,有近13,000名患者等待肝脏移植,但只有三分之二的患者能够获得肝脏移植。 2018年,约有2,500名患者因医疗原因死亡或从等待名单中删除。 恶化可供移植的供体肝脏的短缺导致了边缘肝脏的使用 比一般的供体肝脏风险更高,但可以安全地移植到精心挑选的接受者身上。 这些包括老年供体(>70岁)、脂肪肝和通过心脏移植后捐赠获得的肝脏。 死亡由于其风险性,这些边缘肝脏通常会下降,但多达84%的患者 在移植等待名单上死亡的人在死亡前拒绝了一个或多个边缘肝脏。鉴于此,某些 等待名单上的候选人可能从接受移植中获得生存益处, 器官而不是留在等待名单上(即,如果移植器官,他们会存活更长时间) 边缘肝比他们会在等待名单上生存)。 目前,关于特定边缘肝脏是否适合特定候选人的决定是基于 临床完形或简单的亚组分析,使用传统的回归模型,这可能不完全 近似供体、受体和移植因素之间的复杂相互作用。为了解决这个问题,我们 将利用机器学习(可以包含复杂的高阶交互)来预测 特定候选者将从接受具有特定边缘肝脏的移植中获得存活益处, 并采访移植候选人和外科医生,以了解如何最好地将这些预测转化为 立即临床有用的决策援助。 为了实现这一目标,我们将利用国家移植登记处(SRTR)的数据, (n= 293,140),并使用机器技术(随机森林)来解决以下目标:(1)预测 等待名单上的肝移植候选人的等待名单生存率;(2)预测肝移植后的生存率 边缘肝脏的移植受者;以及(3)创建一个决策辅助工具, 存活率和具有边缘肝的特定移植候选者的预测移植后存活率。这些 鉴于我们小组在肝移植方面的专业知识,对国家登记数据的分析, 和机器学习技术。 我们假设,利用SRTR和机器学习,我们可以准确地预测移植后的生存率。 对于具有特定边缘肝脏的特定候选人,以及对于相同候选人的等待名单存活率, 没有肝脏。我们还假设我们的决策辅助可以实时用于通知临床 决策的如果实现了所提出的目标,我们的决策辅助可以用于改善临床 通过将高质量的风险预测直接带给患者和移植专业人员, 通知实时临床决定候选人是否应该接受边缘肝脏移植。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Factors impacting the medication "Adherence Landscape" for transplant patients.
影响移植患者药物“依从性”的因素。
  • DOI:
    10.1111/ctr.14962
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Bendersky,VictoriaA;Saha,Amrita;Sidoti,CarolynN;Ferzola,Alexander;Downey,Max;Ruck,JessicaM;Vanterpool,KarenB;Young,Lisa;Shegelman,Abigail;Segev,DorryL;Levan,MaceyL
  • 通讯作者:
    Levan,MaceyL
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Victoria Anne Bendersky其他文献

Victoria Anne Bendersky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Victoria Anne Bendersky', 18)}}的其他基金

Development of a Machine Learning Model for Liver Transplantation
肝移植机器学习模型的开发
  • 批准号:
    10208791
  • 财政年份:
    2020
  • 资助金额:
    $ 8.77万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 8.77万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 8.77万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.77万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.77万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 8.77万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.77万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 8.77万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 8.77万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 8.77万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.77万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了