Mechanisms Promoting Cellular Tolerance to Fungistats
促进细胞对抑菌剂耐受的机制
基本信息
- 批准号:10406233
- 负责人:
- 金额:$ 39.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAntifungal AgentsAzole resistanceAzolesBindingBiochemicalBiologicalBiological AssayBiological ModelsBypassCalcineurinCalcineurin inhibitorCandida glabrataCellsCellular StressCeramidesCessation of lifeClinic VisitsClinicalClinics and HospitalsCyclosporineDataDiphosphatesDrug ToleranceEndoplasmic ReticulumEnzymesEukaryotaExposure toFK506FailureFluconazoleFluconazole resistanceGene ProteinsGenesGeneticGenetic ScreeningGenomeGrowthHumanImmune systemImmunocompromised HostImmunosuppressionIndividualIndustrial fungicideInfectionInositolKnock-outLearningMass Spectrum AnalysisMeasurementModelingMorbidity - disease rateMutagenesisMutationMycosesNaturePathogenicityPathway interactionsPersonsPharmaceutical PreparationsPhosphoproteinsPhosphorylationPhosphotransferasesProtein KinaseProtein phosphataseRecoveryRelapseResistanceSaccharomyces cerevisiaeSeriesSignal TransductionSiteSterol Biosynthesis PathwayStressT-LymphocyteTestingTherapeuticToxinWithdrawalYeast Model SystemYeastsassaultbasecalcineurin phosphatasecasein kinase IIdeep sequencingdihydroceramide desaturaseemerging pathogenendoplasmic reticulum stressenzyme biosynthesisexperimental studyfunctional genomicsfungusgenetic approachgenetic resistancegenome wide screengenome-wideimprovedin vivoinhibitorinsightmimeticsmortalitynew technologynovelnovel therapeuticsopportunistic pathogenpathogenpathogenic fungusphosphoproteomicsresistance mechanismresponsescreeningstressortooltumor
项目摘要
Summary
Fungal infections cause significant morbidity and mortality, particularly in immunocompromised individuals.
Most infections are initially treated with Fluconazole or a related azole-class antifungal, which all target sterol
biosynthesis enzymes in the endoplasmic reticulum and arrests growth of the pathogen without directly
killing it. A serious limitation of these fungistats is the emergence of resistance, in addition to potential for
relapse upon withdrawal. Remarkably, azoles can be converted to fungicides by other drugs that specifically
inhibit the protein phosphatase calcineurin. The calcineurin inhibitors do not strongly affect resistance
mechanisms or change the potency of fungistats. Instead they alter tolerance mechanisms that help the
pathogens survive long-term antifungal assaults. Previous studies have focused on how fungistats trigger the
activation of calcineurin. This project aims to reveal the downstream effectors of calcineurin that specifically
regulate tolerance to the fungistats. Two unbiased screening approaches will be utilized to help define new
components of the calcineurin-dependent tolerance mechanism. First, we will utilize a mass spectrometry
approach to identify phospho-proteins in a model yeast that change phosphorylation state in response to
calcineurin inhibitors during exposure to model fungistats (ER stressors). Second, we will develop a novel
genetic approach and conduct the first genome-wide genetic screens in the human opportunistic pathogen
Candida glabrata to identify genes that specifically regulate tolerance to Fluconazole. Genes that regulate
resistance to Fluconazole also will be identified and categorized. This approach, termed Hermes insertion
profiling (HIP), involves in vivo random mutagenesis of the C. glabrata genome using a transposon and
Illumina sequencing of the insertion sites. The combination of these unbiased approaches in different yeast
species exposed to different fungistat classes provides complementary views of the underlaying tolerance
mechanism. Together, a common set of genes/proteins is unveiled whose activities respond to calcineurin in
fungistat-stressed cells and regulate tolerance. We propose a series of genetic, biochemical, and cell biological
experiments in both yeast species to test several hypotheses about their interactions with one another and their
order of action within the calcineurin-dependent tolerance mechanism. These experiments are expected to
reveal at least 5 new components in the cascade that act sequentially: the kinases that synthesize inositol
pyrophosphates, the protein kinase CK2, the ER enzyme ceramide synthase and its product, and a putative
ceramide-activated protein phosphatase. The project therefore provides immediate insights into new therapies
that can kill fungal pathogens while establishing a paradigm for tolerance mechanisms that may operate
broadly in nature.
摘要
真菌感染会导致严重的发病率和死亡率,特别是在免疫功能低下的人中。
大多数感染最初都使用氟康唑或相关的唑类抗真菌药物治疗,这些药物都针对类固醇。
内质网中的生物合成酶,不直接抑制病原菌的生长
杀了它。这些抑菌剂的一个严重限制是出现抗药性,除了潜在的
戒毒后复发。值得注意的是,氮唑可以通过其他特定的药物转化为杀菌剂
抑制蛋白磷酸酶钙调神经磷酸酶。钙调神经磷酸酶抑制剂对耐药性影响不大
作用机制或改变抑菌剂的效力。相反,他们改变了宽容机制,帮助
病原体在长期的抗真菌攻击中存活下来。此前的研究主要集中在真菌抑制剂如何触发
钙调神经磷酸酶的激活。该项目旨在揭示钙调神经磷酸酶的下游效应,特别是
规范对真菌保护者的容忍度。将使用两种无偏见的筛选方法来帮助定义新的
钙调神经磷酸酶依赖的耐受机制的组成部分。首先,我们将利用质谱仪
一种在模型酵母中鉴定磷酸化状态响应的磷酸化蛋白的方法
钙调神经磷酸酶抑制剂在暴露于模型真菌(内质网应激源)的过程中。第二,我们将开发一部小说
遗传学方法并在人类机会性病原体中进行第一次全基因组遗传筛选
光滑假丝酵母菌鉴定特异性调节对氟康唑耐受性的基因。调控基因
对氟康唑的耐药性也将被鉴定和归类。这种方法被称为Hermes插入
侧写(HIP),涉及使用转座子和
插入位点的Illumina测序。这些公正的方法在不同的酵母中的组合
暴露于不同真菌类的物种提供了关于基础耐受性的互补观点
机制。共同揭示了一组共同的基因/蛋白质,它们的活动对钙调神经磷酸酶有反应。
真菌抑制细胞的生长并调节耐受性。我们提出了一系列遗传、生化和细胞生物学
在这两种酵母菌中进行实验,以检验关于它们之间相互作用的几个假设以及它们的
钙调神经磷酸酶依赖的耐受机制中的作用顺序。这些实验预计将
揭示了级联反应中至少5个顺序起作用的新成分:合成肌醇的激酶
焦磷酸,蛋白激酶CK2,ER酶神经酰胺合成酶及其产物,以及一种推定的
神经酰胺激活的蛋白磷酸酶。因此,该项目提供了对新疗法的即时洞察
可以杀死真菌病原体,同时建立一种可能起作用的耐受机制的范例
大体上是自然界的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KYLE W CUNNINGHAM其他文献
KYLE W CUNNINGHAM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KYLE W CUNNINGHAM', 18)}}的其他基金
Mechanisms Promoting Cellular Tolerance to Fungistats
促进细胞对抑菌剂耐受的机制
- 批准号:
10192653 - 财政年份:2020
- 资助金额:
$ 39.44万 - 项目类别:
Mechanisms Promoting Cellular Tolerance to Fungistats
促进细胞对抑菌剂耐受的机制
- 批准号:
10618936 - 财政年份:2020
- 资助金额:
$ 39.44万 - 项目类别:
Mechanisms Promoting Cellular Tolerance to Fungistats
促进细胞对抑菌剂耐受的机制
- 批准号:
10033753 - 财政年份:2020
- 资助金额:
$ 39.44万 - 项目类别:
Assays for Non-selective Cation Channel Inhibitors
非选择性阳离子通道抑制剂的测定
- 批准号:
8102469 - 财政年份:2011
- 资助金额:
$ 39.44万 - 项目类别:
Assays for compounds that block or stimulate yeast cell death
阻止或刺激酵母细胞死亡的化合物的测定
- 批准号:
7169693 - 财政年份:2006
- 资助金额:
$ 39.44万 - 项目类别:
Calcium Signaling and Transport in S Cerevisiae
酿酒酵母中的钙信号传导和运输
- 批准号:
6988487 - 财政年份:1996
- 资助金额:
$ 39.44万 - 项目类别:
Calcium Signaling and Transport in S Cerevisiae
酿酒酵母中的钙信号传导和运输
- 批准号:
7163520 - 财政年份:1996
- 资助金额:
$ 39.44万 - 项目类别:
CALCIUM SIGNALING AND TRANSPORT IN S CEREVISIAE
酿酒酵母中的钙信号传导和运输
- 批准号:
6386201 - 财政年份:1996
- 资助金额:
$ 39.44万 - 项目类别:
CALCIUM SIGNALING AND TRANSPORT IN S CEREVISIAE
酿酒酵母中的钙信号传导和运输
- 批准号:
2900845 - 财政年份:1996
- 资助金额:
$ 39.44万 - 项目类别:
CALCIUM SIGNALING AND TRANSPORT IN S CEREVISIAE
酿酒酵母中的钙信号传导和运输
- 批准号:
6519671 - 财政年份:1996
- 资助金额:
$ 39.44万 - 项目类别:
相似海外基金
Extending the utility and durability of antifungal agents via innovative treatment regimens that minimise drug resistance
通过创新治疗方案最大限度地减少耐药性,延长抗真菌药物的效用和持久性
- 批准号:
MR/Y002164/1 - 财政年份:2024
- 资助金额:
$ 39.44万 - 项目类别:
Research Grant
Engineering microbial cell factories for production of improved polyene antifungal agents
工程微生物细胞工厂用于生产改进的多烯抗真菌剂
- 批准号:
2898887 - 财政年份:2023
- 资助金额:
$ 39.44万 - 项目类别:
Studentship
Morphological profiling for the development of antifungal agents
用于开发抗真菌药物的形态分析
- 批准号:
22H02216 - 财政年份:2022
- 资助金额:
$ 39.44万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
An efficient approach to find therapeutically effective antifungal agents
寻找治疗有效的抗真菌药物的有效方法
- 批准号:
22K05337 - 财政年份:2022
- 资助金额:
$ 39.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating light-activated therapeutic compounds as antifungal agents.
研究光激活治疗化合物作为抗真菌剂。
- 批准号:
2753345 - 财政年份:2022
- 资助金额:
$ 39.44万 - 项目类别:
Studentship
Discovery of novel therapeutic agents for biliary tract and pancreatic cancer based on antifungal agents
基于抗真菌药物的胆道癌和胰腺癌新型治疗药物的发现
- 批准号:
20H03533 - 财政年份:2020
- 资助金额:
$ 39.44万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of antifungal agents that target essential protein kinases in A. fumigatus.
开发针对烟曲霉必需蛋白激酶的抗真菌剂。
- 批准号:
2456629 - 财政年份:2020
- 资助金额:
$ 39.44万 - 项目类别:
Studentship
Elucidation of tip growth factor of fungi and construction of screeing system for antifungal agents
真菌尖端生长因子的阐明及抗真菌药物筛选体系的构建
- 批准号:
19K05738 - 财政年份:2019
- 资助金额:
$ 39.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ambruticins: An inspiration to develop novel biocatalysts and antifungal agents
Ambruticins:开发新型生物催化剂和抗真菌剂的灵感
- 批准号:
2107517 - 财政年份:2018
- 资助金额:
$ 39.44万 - 项目类别:
Studentship














{{item.name}}会员




