Mechanisms Promoting Cellular Tolerance to Fungistats

促进细胞对抑菌剂耐受的机制

基本信息

  • 批准号:
    10618936
  • 负责人:
  • 金额:
    $ 39.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-15 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Summary Fungal infections cause significant morbidity and mortality, particularly in immunocompromised individuals. Most infections are initially treated with Fluconazole or a related azole-class antifungal, which all target sterol biosynthesis enzymes in the endoplasmic reticulum and arrests growth of the pathogen without directly killing it. A serious limitation of these fungistats is the emergence of resistance, in addition to potential for relapse upon withdrawal. Remarkably, azoles can be converted to fungicides by other drugs that specifically inhibit the protein phosphatase calcineurin. The calcineurin inhibitors do not strongly affect resistance mechanisms or change the potency of fungistats. Instead they alter tolerance mechanisms that help the pathogens survive long-term antifungal assaults. Previous studies have focused on how fungistats trigger the activation of calcineurin. This project aims to reveal the downstream effectors of calcineurin that specifically regulate tolerance to the fungistats. Two unbiased screening approaches will be utilized to help define new components of the calcineurin-dependent tolerance mechanism. First, we will utilize a mass spectrometry approach to identify phospho-proteins in a model yeast that change phosphorylation state in response to calcineurin inhibitors during exposure to model fungistats (ER stressors). Second, we will develop a novel genetic approach and conduct the first genome-wide genetic screens in the human opportunistic pathogen Candida glabrata to identify genes that specifically regulate tolerance to Fluconazole. Genes that regulate resistance to Fluconazole also will be identified and categorized. This approach, termed Hermes insertion profiling (HIP), involves in vivo random mutagenesis of the C. glabrata genome using a transposon and Illumina sequencing of the insertion sites. The combination of these unbiased approaches in different yeast species exposed to different fungistat classes provides complementary views of the underlaying tolerance mechanism. Together, a common set of genes/proteins is unveiled whose activities respond to calcineurin in fungistat-stressed cells and regulate tolerance. We propose a series of genetic, biochemical, and cell biological experiments in both yeast species to test several hypotheses about their interactions with one another and their order of action within the calcineurin-dependent tolerance mechanism. These experiments are expected to reveal at least 5 new components in the cascade that act sequentially: the kinases that synthesize inositol pyrophosphates, the protein kinase CK2, the ER enzyme ceramide synthase and its product, and a putative ceramide-activated protein phosphatase. The project therefore provides immediate insights into new therapies that can kill fungal pathogens while establishing a paradigm for tolerance mechanisms that may operate broadly in nature.
总结 真菌感染引起显著的发病率和死亡率,特别是在免疫功能低下的个体中。 大多数感染最初都是用氟康唑或相关的唑类抗真菌药物治疗的,这些药物都是针对固醇的 在内质网中的生物合成酶,并阻止病原体的生长,而不直接 这些抑真菌剂的一个严重限制是耐药性的出现,除了潜在的 戒断后复发。值得注意的是,唑类可以被其他药物转化为杀真菌剂, 抑制蛋白磷酸酶钙调磷酸酶。钙调神经磷酸酶抑制剂对耐药性影响不大 机制或改变真菌抑制剂的效力。相反,它们改变了耐受机制, 病原体在长期的抗真菌攻击中存活。以前的研究集中在抑真菌剂如何触发 钙调磷酸酶的激活。该项目旨在揭示钙调磷酸酶的下游效应物, 调节对抑真菌剂的耐受性。两种无偏倚的筛选方法将用于帮助定义新的 钙调神经磷酸酶依赖性耐受机制的组成部分。首先,我们将利用质谱仪 一种鉴定模型酵母中改变磷酸化状态的磷酸化蛋白的方法, 钙调磷酸酶抑制剂在暴露于模型抑真菌剂(ER应激物)。第二,我们将开发一种新的 遗传学方法,并在人类机会致病菌中进行首次全基因组遗传筛查 光滑念珠菌鉴定特异性调节氟康唑耐受性的基因。基因调控 对氟康唑的耐药性也将被鉴定和分类。这种方法,称为爱马仕插入 热等静压(HIP),包括C. glabrata基因组使用转座子, 插入位点的Illumina测序。这些无偏方法在不同酵母中的组合 暴露于不同抑真菌剂类别的物种提供了基础耐受性的补充观点 机制总之,一组共同的基因/蛋白质被揭示出来,它们的活性对钙调神经磷酸酶有反应, 抗真菌剂应激细胞和调节耐受性。我们提出了一系列的遗传、生化和细胞生物学 在这两种酵母物种中进行实验,以测试关于它们彼此相互作用的几种假设,以及它们之间的相互作用。 钙调神经磷酸酶依赖性耐受机制中的作用顺序。这些实验预计将 揭示了级联反应中至少5种新的组分:合成肌醇的激酶 焦磷酸,蛋白激酶CK 2,ER酶神经酰胺合酶及其产物,以及一种推定的 神经酰胺活化蛋白磷酸酶。因此,该项目提供了对新疗法的直接见解 它可以杀死真菌病原体,同时建立一个耐受机制的范例, 广泛地在自然界。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identification of Essential Genes and Fluconazole Susceptibility Genes in Candida glabrata by Profiling Hermes Transposon Insertions.
  • DOI:
    10.1534/g3.120.401595
  • 发表时间:
    2020-10-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gale AN;Sakhawala RM;Levitan A;Sharan R;Berman J;Timp W;Cunningham KW
  • 通讯作者:
    Cunningham KW
Comparing the utility of in vivo transposon mutagenesis approaches in yeast species to infer gene essentiality.
  • DOI:
    10.1007/s00294-020-01096-6
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Levitan A;Gale AN;Dallon EK;Kozan DW;Cunningham KW;Sharan R;Berman J
  • 通讯作者:
    Berman J
Calcineurin-dependent contributions to fitness in the opportunistic pathogen Candida glabrata.
钙调神经素依赖性对机会性病原体念珠菌的贡献。
  • DOI:
    10.1128/msphere.00554-23
  • 发表时间:
    2024-01-30
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
  • 通讯作者:
Redefining pleiotropic drug resistance in a pathogenic yeast: Pdr1 functions as a sensor of cellular stresses in Candida glabrata.
  • DOI:
    10.1128/msphere.00254-23
  • 发表时间:
    2023-08-24
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KYLE W CUNNINGHAM其他文献

KYLE W CUNNINGHAM的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KYLE W CUNNINGHAM', 18)}}的其他基金

Mechanisms Promoting Cellular Tolerance to Fungistats
促进细胞对抑菌剂耐受的机制
  • 批准号:
    10192653
  • 财政年份:
    2020
  • 资助金额:
    $ 39.4万
  • 项目类别:
Mechanisms Promoting Cellular Tolerance to Fungistats
促进细胞对抑菌剂耐受的机制
  • 批准号:
    10406233
  • 财政年份:
    2020
  • 资助金额:
    $ 39.4万
  • 项目类别:
Mechanisms Promoting Cellular Tolerance to Fungistats
促进细胞对抑菌剂耐受的机制
  • 批准号:
    10033753
  • 财政年份:
    2020
  • 资助金额:
    $ 39.4万
  • 项目类别:
Assays for Non-selective Cation Channel Inhibitors
非选择性阳离子通道抑制剂的测定
  • 批准号:
    8102469
  • 财政年份:
    2011
  • 资助金额:
    $ 39.4万
  • 项目类别:
Assays for compounds that block or stimulate yeast cell death
阻止或刺激酵母细胞死亡的化合物的测定
  • 批准号:
    7169693
  • 财政年份:
    2006
  • 资助金额:
    $ 39.4万
  • 项目类别:
Calcium Signaling and Transport in S Cerevisiae
酿酒酵母中的钙信号传导和运输
  • 批准号:
    6988487
  • 财政年份:
    1996
  • 资助金额:
    $ 39.4万
  • 项目类别:
Calcium Signaling and Transport in S Cerevisiae
酿酒酵母中的钙信号传导和运输
  • 批准号:
    7163520
  • 财政年份:
    1996
  • 资助金额:
    $ 39.4万
  • 项目类别:
CALCIUM SIGNALING AND TRANSPORT IN S CEREVISIAE
酿酒酵母中的钙信号传导和运输
  • 批准号:
    6386201
  • 财政年份:
    1996
  • 资助金额:
    $ 39.4万
  • 项目类别:
CALCIUM SIGNALING AND TRANSPORT IN S CEREVISIAE
酿酒酵母中的钙信号传导和运输
  • 批准号:
    2900845
  • 财政年份:
    1996
  • 资助金额:
    $ 39.4万
  • 项目类别:
CALCIUM SIGNALING AND TRANSPORT IN S CEREVISIAE
酿酒酵母中的钙信号传导和运输
  • 批准号:
    6519671
  • 财政年份:
    1996
  • 资助金额:
    $ 39.4万
  • 项目类别:

相似海外基金

Extending the utility and durability of antifungal agents via innovative treatment regimens that minimise drug resistance
通过创新治疗方案最大限度地减少耐药性,延长抗真菌药物的效用和持久性
  • 批准号:
    MR/Y002164/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.4万
  • 项目类别:
    Research Grant
Engineering microbial cell factories for production of improved polyene antifungal agents
工程微生物细胞工厂用于生产改进的多烯抗真菌剂
  • 批准号:
    2898887
  • 财政年份:
    2023
  • 资助金额:
    $ 39.4万
  • 项目类别:
    Studentship
Morphological profiling for the development of antifungal agents
用于开发抗真菌药物的形态分析
  • 批准号:
    22H02216
  • 财政年份:
    2022
  • 资助金额:
    $ 39.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
An efficient approach to find therapeutically effective antifungal agents
寻找治疗有效的抗真菌药物的有效方法
  • 批准号:
    22K05337
  • 财政年份:
    2022
  • 资助金额:
    $ 39.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigating light-activated therapeutic compounds as antifungal agents.
研究光激活治疗化合物作为抗真菌剂。
  • 批准号:
    2753345
  • 财政年份:
    2022
  • 资助金额:
    $ 39.4万
  • 项目类别:
    Studentship
Discovery of novel therapeutic agents for biliary tract and pancreatic cancer based on antifungal agents
基于抗真菌药物的胆道癌和胰腺癌新型治疗药物的发现
  • 批准号:
    20H03533
  • 财政年份:
    2020
  • 资助金额:
    $ 39.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of antifungal agents that target essential protein kinases in A. fumigatus.
开发针对烟曲霉必需蛋白激酶的抗真菌剂。
  • 批准号:
    2456629
  • 财政年份:
    2020
  • 资助金额:
    $ 39.4万
  • 项目类别:
    Studentship
Development of Broad Spectrum Antifungal Agents
广谱抗真菌药物的开发
  • 批准号:
    9909111
  • 财政年份:
    2020
  • 资助金额:
    $ 39.4万
  • 项目类别:
Elucidation of tip growth factor of fungi and construction of screeing system for antifungal agents
真菌尖端生长因子的阐明及抗真菌药物筛选体系的构建
  • 批准号:
    19K05738
  • 财政年份:
    2019
  • 资助金额:
    $ 39.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ambruticins: An inspiration to develop novel biocatalysts and antifungal agents
Ambruticins:开发新型生物催化剂和抗真菌剂的灵感
  • 批准号:
    2107517
  • 财政年份:
    2018
  • 资助金额:
    $ 39.4万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了