PIMT1 in Red Blood Cell aging in vivo and in vitro
PIMT1在体内和体外红细胞老化中的作用
基本信息
- 批准号:10405591
- 负责人:
- 金额:$ 60.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityAgeAgingAldehyde-LyasesAmericanAnimal ModelAnimalsAnionsAsparagineAspartateBackBindingBinding SitesBiochemicalBiochemical PathwayBiologyBloodBlood BanksBlood TransfusionBlood donorCell AgingCell SeparationCell SurvivalCell membraneCell physiologyCellsCellular biologyChargeChemicalsChildhoodChloridesDataDehydrationDiseaseDissectionDockingEnergy MetabolismEnzymesErythrocyte TransfusionErythrocytesEstersExposure toFailureFlow CytometryFunctional disorderG6PD geneGlucoseGlucosephosphate Dehydrogenase DeficiencyGlyceraldehyde-3-Phosphate DehydrogenasesGlycolysisGoalsHealthHemoglobinHomeostasisHospitalsHumanHuman bodyIn VitroIndividualInpatientsKnockout MiceLogisticsLongevityLungMasksMediatingMedicalMembrane ProteinsMetabolicMetabolic PathwayMetabolic stressMetabolismMethodologyMethylationMethyltransferaseModelingMolecularMusN-terminalNADPNew YorkOrganismOxidantsOxidation-ReductionOxidative StressOxidesOxygenPathologicPathologyPathway interactionsPentosephosphate PathwayPeripheralPersonsPhysiologicalPlayPopulationProceduresProtein BiosynthesisProtein MethylationProteinsProteomicsReactionRecyclingRegulationRoleSickle CellSiteSuccinimidesSystemTestingTimeTissuesToxicologyTransfusionTranslationsVertebral columnage relatedcell agecell typecofactordeamidationdesigngene productin vivometabolomicsmouse modelmutantnovelnovel therapeutic interventionoxidant stressoxidationoxidative damagerepairedsenescencesensorstressortool
项目摘要
ABSTRACT
A variety of specific chemical damage occurs as a result of normal cellular senescence, as well as accelerated
damage in the context of certain pathologies. One such chemical pathway is the degradation of aspartates into
isoaspartyl residues through oxidant damage. As a repair mechanisms, PIMT1 is an enzymatic pathway that
methylates isoaspartyl residues, creating an isoaspartyl methyl ester that is capable of then spontaneously
reverting into aspartate, thus reversing isoaspartyl damage. Insufficient PIMT1 activity has been associated with
increased oxidant stress and shorter cellular and organism lifespan in mice; however, a detailed metabolic and
biochemical analysis of the role of PIMT1 has not been elucidated. In this application, we propose to study the
role of PIMT1 in cellular aging. While multiple tissues will be analyzed to test general effects of PIMT1, this
proposal mainly focusses on a specific central hypothesis regarding effects in red blood cells (RBCs). RBCs are
essential to health, and dysfunction of RBCs plays a central role in multiple diseases. In addition, transfusion of
RBCs is the single most common inpatient invasive therapy, being given to approximately 1 out of every 70
Americans, annually. RBCs that are transfused are stored (as a logistical necessity) for up to 42 days, during
which time they undergo specific cellular and biochemical damage. RBCs are known to lose an essential
regulatory function through a key gene product (AE1) in normal cellular aging and in RBC storage. However, the
molecular mechanism by which AE1 dysfunction occurs has been unknown. In this application we provide novel
data demonstrating that isoaspartyl damage occurs in AE1 of both human and murine RBCs in a domain of AE1
that requires aspartates to function. We likewise present data suggesting that failure of PIMT1 pathways
accelerates this damage – however whole animal modeling with deletion of PIMT1 is required to test a
mechanistic role. In this context, we offer the following specific aims, designed to critically test hypotheses
around the role of PIMT1 mediated repair of oxidant damage. Specific Aim 1: Mechanistic elucidation of the
role of protein methylation by PIMT1 in the function and senescence of RBCs. Specific Aim 2: the interaction
of increased oxidant stress on PIMT1 and its effects on RBCs aging in vivo and ex vivo (blood storage). PIMT1
null mice will be combined with additional strains designed to isolate metabolic pathways of functional relevance
(e.g. G6PD deficient). Advanced experimental methodologies will be applied to these animals in order to isolate
cells of particular age and physiological conditions. Finally, the controlled biologies generated from these
approaches will be analyzed by cutting edge metabolomic and proteomic methodologies. In aggregate, these
studies will advance our understanding of the role of specific pathways of biochemical cellular aging, of the
mechanistic role of a conserved repair pathway (PIMT1), and in the context of advanced biochemical analysis
and modeling to generate novel mechanistic understanding and critical testing of focused hypotheses.
摘要
由于细胞的正常衰老和加速衰老,会发生各种特殊的化学损伤。
在某些病理背景下的损害。一种这样的化学途径是天冬氨酸降解成
异天冬氨酸残留物通过氧化剂破坏。作为一种修复机制,PIMT1是一种酶途径,
甲基化异天冬氨酸残基,生成一种异天冬氨酸甲酯,能够自发地
还原为天冬氨酸,从而逆转异天冬氨酸的损伤。PIMT1活动不足与
小鼠氧化应激增加,细胞和组织寿命缩短;然而,详细的代谢和
PIMT1的生物化学分析尚未阐明其作用。在此应用程序中,我们建议研究
PIMT1在细胞衰老中的作用。虽然将对多个组织进行分析以测试PIMT1的一般效应,但这
建议主要集中在一个关于红细胞(RBC)效应的特定中心假说上。RBC是
红细胞对健康至关重要,而红细胞功能障碍在多种疾病中起核心作用。此外,输注
红细胞压积是住院患者中最常见的一种侵入性治疗,每70人中约有1人接受这种治疗。
美国人,每年。输注的红细胞储存(出于后勤需要)长达42天
在这段时间里,它们会受到特定的细胞和生化损伤。众所周知,红细胞会失去一种必需的
通过一个关键基因产物(AE1)在正常细胞衰老和红细胞储存中发挥调节作用。然而,
AE1功能障碍发生的分子机制尚不清楚。在此应用程序中,我们提供了新的
数据表明,人和小鼠红细胞的AE1结构域中都存在异天冬氨酸损伤
这需要天冬氨酸发挥作用。我们同样提供的数据表明,PIMT1通路的故障
加速了这种损害-然而,需要删除PIMT1的整个动物模型来测试
机械角色。在这种背景下,我们提供了以下具体目标,旨在批判性地检验假设
围绕PIMT1介导的氧化损伤修复作用。具体目标1:从机制上阐明
PIMT1蛋白甲基化在红细胞功能和衰老中的作用。具体目标2:互动
PIMT1氧化应激增加及其对红细胞在体内和体外老化的影响(血液储存)。PIMT1
空小鼠将与其他菌株相结合,以分离与功能相关的代谢途径
(例如G6PD缺乏)。将对这些动物应用先进的实验方法,以便分离出
特定年龄和生理条件的细胞。最后,由这些生物产生的受控生物
这些方法将通过尖端的代谢组学和蛋白质组学方法进行分析。总的来说,这些
研究将促进我们对特定的生化细胞衰老途径的作用的理解,以及
保守修复途径的机械作用(PIMT1),以及在高级生化分析的背景下
和建模,以产生对聚焦假设的新的机械性理解和关键测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angelo D'Alessandro其他文献
Angelo D'Alessandro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Angelo D'Alessandro', 18)}}的其他基金
Investigating metabolic responses to high sugar diets and the onset of diabetic phenotypes
研究对高糖饮食的代谢反应和糖尿病表型的发生
- 批准号:
10719544 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Interactions between the ADORA2b/Sphk1axis and the AE1-Hb switch in red blood cell aging in vivo and in vitro
ADORA2b/Sphk1axis 和 AE1-Hb 开关在体内和体外红细胞老化中的相互作用
- 批准号:
10580716 - 财政年份:2020
- 资助金额:
$ 60.58万 - 项目类别:
Interactions between the ADORA2b/Sphk1axis and the AE1-Hb switch in red blood cell aging in vivo and in vitro
ADORA2b/Sphk1axis 和 AE1-Hb 开关在体内和体外红细胞老化中的相互作用
- 批准号:
10369002 - 财政年份:2020
- 资助金额:
$ 60.58万 - 项目类别:
The Impact of Oxidative Stress on Erythocyte Biology
氧化应激对红细胞生物学的影响
- 批准号:
10252033 - 财政年份:2019
- 资助金额:
$ 60.58万 - 项目类别:
The Impact of Oxidative Stress on Erythocyte Biology
氧化应激对红细胞生物学的影响
- 批准号:
10487440 - 财政年份:2019
- 资助金额:
$ 60.58万 - 项目类别:
PIMT1 in Red Blood Cell aging in vivo and in vitro
PIMT1在体内和体外红细胞老化中的作用
- 批准号:
10605316 - 财政年份:2019
- 资助金额:
$ 60.58万 - 项目类别:
PIMT1 in Red Blood Cell aging in vivo and in vitro
PIMT1在体内和体外红细胞老化中的作用
- 批准号:
9983156 - 财政年份:2019
- 资助金额:
$ 60.58万 - 项目类别:
The Impact of Oxidative Stress on Erythocyte Biology
氧化应激对红细胞生物学的影响
- 批准号:
10022515 - 财政年份:2019
- 资助金额:
$ 60.58万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Continuing Grant