PIMT1 in Red Blood Cell aging in vivo and in vitro
PIMT1在体内和体外红细胞老化中的作用
基本信息
- 批准号:9983156
- 负责人:
- 金额:$ 60.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityAgeAgingAldehyde-LyasesAmericanAnimal ModelAnimalsAnionsAsparagineAspartateBackBindingBinding SitesBiochemicalBiochemical PathwayBiologyBloodBlood BanksBlood TransfusionBlood donorCell AgingCell SeparationCell SurvivalCell membraneCell physiologyCellsCellular biologyChargeChemicalsChildhoodChloridesDataDehydrationDiseaseDissectionDockingEnergy MetabolismEnzymesErythrocyte TransfusionErythrocytesEstersExposure toFailureFlow CytometryFunctional disorderG6PD geneGlucoseGlucosephosphate Dehydrogenase DeficiencyGlyceraldehyde-3-Phosphate DehydrogenasesGlycolysisGoalsHealthHemoglobinHomeostasisHospitalsHumanHuman bodyIn VitroIndividualInpatientsKnockout MiceLogisticsLongevityLungMasksMediatingMedicalMembrane ProteinsMetabolicMetabolic PathwayMetabolic stressMetabolismMethodologyMethylationMethyltransferaseModelingMolecularMusN-terminalNADPNew YorkOrganismOxidantsOxidation-ReductionOxidative StressOxidesOxygenPathologicPathologyPathway interactionsPentosephosphate PathwayPeripheralPhysiologicalPlayPopulationProceduresProtein BiosynthesisProtein MethylationProteinsProteomicsReactionRecyclingRegulationRoleSickle CellSiteStructureSuccinimidesSystemTestingTimeTissuesToxicologyTransfusionTranslationsVertebral columnage relatedcell agecell typecofactordeamidationdesigngene productin vivometabolomicsmouse modelmutantnovelnovel therapeutic interventionoxidant stressoxidationoxidative damagerepairedsenescencesensorstressortool
项目摘要
ABSTRACT
A variety of specific chemical damage occurs as a result of normal cellular senescence, as well as accelerated
damage in the context of certain pathologies. One such chemical pathway is the degradation of aspartates into
isoaspartyl residues through oxidant damage. As a repair mechanisms, PIMT1 is an enzymatic pathway that
methylates isoaspartyl residues, creating an isoaspartyl methyl ester that is capable of then spontaneously
reverting into aspartate, thus reversing isoaspartyl damage. Insufficient PIMT1 activity has been associated with
increased oxidant stress and shorter cellular and organism lifespan in mice; however, a detailed metabolic and
biochemical analysis of the role of PIMT1 has not been elucidated. In this application, we propose to study the
role of PIMT1 in cellular aging. While multiple tissues will be analyzed to test general effects of PIMT1, this
proposal mainly focusses on a specific central hypothesis regarding effects in red blood cells (RBCs). RBCs are
essential to health, and dysfunction of RBCs plays a central role in multiple diseases. In addition, transfusion of
RBCs is the single most common inpatient invasive therapy, being given to approximately 1 out of every 70
Americans, annually. RBCs that are transfused are stored (as a logistical necessity) for up to 42 days, during
which time they undergo specific cellular and biochemical damage. RBCs are known to lose an essential
regulatory function through a key gene product (AE1) in normal cellular aging and in RBC storage. However, the
molecular mechanism by which AE1 dysfunction occurs has been unknown. In this application we provide novel
data demonstrating that isoaspartyl damage occurs in AE1 of both human and murine RBCs in a domain of AE1
that requires aspartates to function. We likewise present data suggesting that failure of PIMT1 pathways
accelerates this damage – however whole animal modeling with deletion of PIMT1 is required to test a
mechanistic role. In this context, we offer the following specific aims, designed to critically test hypotheses
around the role of PIMT1 mediated repair of oxidant damage. Specific Aim 1: Mechanistic elucidation of the
role of protein methylation by PIMT1 in the function and senescence of RBCs. Specific Aim 2: the interaction
of increased oxidant stress on PIMT1 and its effects on RBCs aging in vivo and ex vivo (blood storage). PIMT1
null mice will be combined with additional strains designed to isolate metabolic pathways of functional relevance
(e.g. G6PD deficient). Advanced experimental methodologies will be applied to these animals in order to isolate
cells of particular age and physiological conditions. Finally, the controlled biologies generated from these
approaches will be analyzed by cutting edge metabolomic and proteomic methodologies. In aggregate, these
studies will advance our understanding of the role of specific pathways of biochemical cellular aging, of the
mechanistic role of a conserved repair pathway (PIMT1), and in the context of advanced biochemical analysis
and modeling to generate novel mechanistic understanding and critical testing of focused hypotheses.
摘要
各种特定的化学损伤发生作为正常细胞衰老的结果,以及加速细胞衰老。
在某些病理情况下的损害。一种这样的化学途径是将酒石酸盐降解为
氧化剂损伤导致异天冬氨酰残留。作为一种修复机制,PIMT 1是一种酶途径,
甲基化异丙基残基,产生异丙基甲基酯,然后能够自发
转化为天冬氨酸,从而逆转异戊酰损伤。PIMT 1活性不足与
小鼠中氧化应激增加和细胞和生物体寿命缩短;然而,详细的代谢和
PIMT 1作用的生化分析尚未阐明。在本申请中,我们建议研究
PIMT 1在细胞衰老中的作用虽然将分析多个组织以测试PIMT 1的一般效应,但这
该提案主要关注关于红细胞(RBC)效应的特定中心假设。rbc是
红细胞对健康至关重要,红细胞功能障碍在多种疾病中起着核心作用。此外,输血
红细胞是最常见的单一住院侵入性治疗,大约每70人中就有1人接受
美国人每年输注的红细胞储存(作为后勤必需品)长达42天,
此时它们会受到特定的细胞和生化损伤。已知红细胞会失去一种重要的
在正常细胞老化和红细胞储存中,通过关键基因产物(AE 1)发挥调节功能。但
AE 1功能障碍发生的分子机制尚不清楚。在本申请中,我们提供了新颖的
数据表明,在人和鼠RBC的AE 1中,在AE 1的结构域中,
这需要一个系统来运作。我们同样提出的数据表明,PIMT 1通路的失败,
加速了这种损伤-然而,需要缺失PIMT 1的整个动物模型来测试这种损伤。
机械的作用。在这种情况下,我们提出了以下具体目标,旨在严格检验假设
PIMT 1介导的氧化损伤修复的作用。具体目标1:
PIMT 1蛋白甲基化在红细胞功能和衰老中的作用。具体目标2:互动
PIMT 1上增加的氧化应激及其对体内和离体RBC老化(血液储存)的影响。PIMT 1
空小鼠将与设计用于分离功能相关的代谢途径的其他品系组合
(e.g. G6 PD缺陷)。先进的实验方法将应用于这些动物,以分离
特定年龄和生理条件的细胞。最后,由这些产生的受控生物
将通过最先进的代谢组学和蛋白质组学方法对这些方法进行分析。总的来说,这些
研究将促进我们对生化细胞衰老的特定途径的作用的理解,
保守修复途径(PIMT 1)的机制作用以及先进生化分析的背景
和建模,以产生新的机械理解和重点假设的关键测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angelo D'Alessandro其他文献
Angelo D'Alessandro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Angelo D'Alessandro', 18)}}的其他基金
Investigating metabolic responses to high sugar diets and the onset of diabetic phenotypes
研究对高糖饮食的代谢反应和糖尿病表型的发生
- 批准号:
10719544 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Interactions between the ADORA2b/Sphk1axis and the AE1-Hb switch in red blood cell aging in vivo and in vitro
ADORA2b/Sphk1axis 和 AE1-Hb 开关在体内和体外红细胞老化中的相互作用
- 批准号:
10580716 - 财政年份:2020
- 资助金额:
$ 60.58万 - 项目类别:
Interactions between the ADORA2b/Sphk1axis and the AE1-Hb switch in red blood cell aging in vivo and in vitro
ADORA2b/Sphk1axis 和 AE1-Hb 开关在体内和体外红细胞老化中的相互作用
- 批准号:
10369002 - 财政年份:2020
- 资助金额:
$ 60.58万 - 项目类别:
The Impact of Oxidative Stress on Erythocyte Biology
氧化应激对红细胞生物学的影响
- 批准号:
10252033 - 财政年份:2019
- 资助金额:
$ 60.58万 - 项目类别:
The Impact of Oxidative Stress on Erythocyte Biology
氧化应激对红细胞生物学的影响
- 批准号:
10487440 - 财政年份:2019
- 资助金额:
$ 60.58万 - 项目类别:
PIMT1 in Red Blood Cell aging in vivo and in vitro
PIMT1在体内和体外红细胞老化中的作用
- 批准号:
10405591 - 财政年份:2019
- 资助金额:
$ 60.58万 - 项目类别:
PIMT1 in Red Blood Cell aging in vivo and in vitro
PIMT1在体内和体外红细胞老化中的作用
- 批准号:
10605316 - 财政年份:2019
- 资助金额:
$ 60.58万 - 项目类别:
The Impact of Oxidative Stress on Erythocyte Biology
氧化应激对红细胞生物学的影响
- 批准号:
10022515 - 财政年份:2019
- 资助金额:
$ 60.58万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Continuing Grant