Sepsis phenotypes at risk for infections caused by multidrug resistant Gram-negative bacilli: elucidating the impact of sepsis definition and patient case mix on prediction performance
脓毒症表型面临由多重耐药革兰氏阴性杆菌引起的感染风险:阐明脓毒症定义和患者病例组合对预测性能的影响
基本信息
- 批准号:10412800
- 负责人:
- 金额:$ 13.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-10 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccreditationAlgorithmsAntibioticsAntimicrobial ResistanceArtificial IntelligenceAwardBacillusBig DataCase MixesCause of DeathCharacteristicsClinicalClinical DataClinical MedicineCognitionCollaborationsCommunicable DiseasesCommunitiesComplementCritical CareDataData ElementData EngineeringData ScientistData SetDevelopment PlansDiagnosisEarly DiagnosisElectronic Health RecordEnsureEnvironmentEthnic OriginEthnic groupFAIR principlesFundingGenderGoalsHealth Care CostsHealthcare SystemsHospitalsHumanImageIndividualInfectionInformaticsLabelLaboratoriesLinkMachine LearningMedicineMentorsMentorshipMetadataMethodsMinority GroupsModelingMorbidity - disease rateMulti-Drug ResistanceNational Institute of General Medical SciencesNursing HomesOutcomeParentsPatientsPatternPerformancePharmaceutical PreparationsPhenotypePopulationProblem SolvingRaceReadinessReportingReproducibilityResearchResearch PersonnelResistanceRiskRisk EstimateRisk FactorsRuralSepsisStandardizationStructureSubgroupSymptomsSyndromeSystemTRUST principlesTestingTextTimeTrainingUnited States National Institutes of HealthUniversitiesUrban HospitalsWashingtonbasecareer developmentclinical applicationcohortcomorbiditycostdata dictionarydata miningdata toolsdesignemerging antimicrobial resistanceexperienceimage processingimprovedindividualized medicineinfection riskinnovationinterestmachine learning algorithmmachine learning methodmathematical modelmortality riskmultidisciplinarypatient populationpredictive modelingprimary outcomeresidencerisk predictionsocioeconomicsstemstructured datasuburbtoolunstructured dataunsupervised learning
项目摘要
SUPPLEMENT ABSTRACT
Sepsis is a devastating syndrome that represents a leading cause of death, morbidity, and healthcare costs. Its
impact is amplified by rising rates of antimicrobial resistance. Improving sepsis outcomes primarily results from
prescribing timely antibiotics based on the estimated risk of multidrug resistance (MDR). Artificial intelligence
(AI) and machine learning (ML) are data- driven approaches looking for patterns in massive datasets. While
the AI/ ML algorithms rapidly advanced and built successful imaging processing applications, the promise of
AI/ML in sepsis and antimicrobial resistance research remains largely unfulfilled. The main reasons stem from
deficient, inaccessible and poorly labeled clinical data allowing for only a small portion of the electronic health
records (EHR) data to be used. More so, clinical narratives such as notes and imaging reports which contain
unstructured data elements in free text format are almost never used. Our parent K08 award aims to identify
sepsis phenotypes at risk for MDR GNB that will enable better antibiotic prescribing practices and standardize
comparisons across hospitals. We propose to accomplish our goal by leveraging big data and using innovative
methods such as ML methods. This supplement will strengthen our project by analyzing in detail the barriers to
efficiently using EHR data including unstructured data elements and providing data engineering solutions. The
objective is to provide the framework for ML use in sepsis research. Demonstrating reproducibility and rigor of
our ML methods and making the algorithms and datasets accessible per FAIR and TRUST principles will be
responsive to NIGMS and broader NIH priorities. Our aims reflect these priorities: 1) Analyze barriers to use
of EHR structured data and provide data engineering solutions for data enrichment, 2) Extract and
assess the importance of unstructured data in developing ML sepsis models, and 3) Compare the ML
sepsis models using unstructured and structured data VS structured data only and ensure algorithm
fairness by testing it across subgroups of interest based on gender and race. We will incorporate clinical
data from the 15 hospitals in our healthcare system serving an ethnically and socioeconomically diverse
patient population in rural, suburban and urban hospitals.
Dr. Vazquez Guillamet has training in Infectious Diseases and Critical Care Medicine and experience in sepsis
research. This supplement complements and broadens the initial K08 award. It serves as the natural next step
in deepening her expertise in innovative methods. This supplement will provide the opportunity for meaningful
collaborations with data scientists with ample expertise in unstructured data methods and data engineers
specialized in ML methods. It will help Dr. Vazquez Guillamet to promote clinically applicable algorithms for
challenging problems such as sepsis treatment.
For this supplement, Dr. Vazquez Guillamet will continue the collaboration with her multidisciplinary team of
mentors and add data engineering support. An accredited course in unsupervised machine learning will be
added to her career development plan. She will continue her path to becoming an analytics translator at the
intersection of clinical medicine and clinical applied informatics. The fertile research environment at
Washington University in St. Louis with focus on data availability, the experienced mentorship team now
incorporating data engineering expertise and a well-crafted career development plan will enable Dr. Vazquez
Guillamet to achieve her long-term goal of becoming an independently funded clinician-investigator utilizing big
data to develop applications for risk prediction, surveillance, and outcome comparisons in sepsis and
antimicrobial resistance.
增刊摘要
败血症是一种毁灭性的综合征,是导致死亡、发病率和医疗费用的主要原因。它的
抗菌素耐药率的上升放大了影响。改善脓毒症预后的主要结果是
根据多药耐药(MDR)的估计风险,及时开出抗生素。人工智能
(AI)和机器学习(ML)是数据驱动的方法,在海量数据集中寻找模式。而当
AI/ML算法迅速发展并构建了成功的图像处理应用程序,承诺
AI/ML在脓毒症和抗菌药耐药性研究中的应用仍未完成。其主要原因是
有缺陷、无法访问和标签不佳的临床数据只允许电子健康的一小部分
要使用的记录(EHR)数据。更重要的是,临床描述,如笔记和成像报告,包含
自由文本格式的非结构化数据元素几乎从未使用过。我们的家长K08奖旨在确定
脓毒症表型面临MDR GNB的风险,这将使更好的抗生素处方实践和标准化
不同医院之间的比较。我们建议通过利用大数据和使用创新的
方法,如ML方法。本增刊将通过详细分析以下障碍来加强我们的项目
高效使用电子病历数据,包括非结构化数据元素,并提供数据工程解决方案。这个
目的为ML在脓毒症研究中的应用提供框架。展示可重复性和严密性
我们的ML方法和使算法和数据集根据公平和信任原则可访问将是
响应NIGMS和更广泛的NIH优先事项。我们的目标反映了这些优先事项:1)分析使用障碍
并为数据丰富提供数据工程解决方案,2)提取和
评估非结构化数据在开发ML脓毒症模型中的重要性,以及3)比较ML
使用非结构化和结构化数据与仅使用结构化数据的脓毒症模型,并确保算法
通过在基于性别和种族的兴趣小组中测试它的公平性。我们将纳入临床
来自我们医疗系统中15家医院的数据,这些医院为不同种族和社会经济背景的人提供服务
农村、郊区和城市医院的患者群体。
Vazquez Guillamet医生接受过传染病和重症监护医学方面的培训,并有脓毒症方面的经验
研究。这一补充补充和扩大了最初的K08奖项。这是自然而然的下一步
加深了她在创新方法方面的专业知识。这一补充将提供有意义的机会
与在非结构化数据方法和数据工程师方面拥有丰富专业知识的数据科学家合作
专门研究ML方法。它将帮助Vazquez Guillamet博士推广临床适用的算法
具有挑战性的问题,如脓毒症的治疗。
在本增刊中,Vazquez Guillamet博士将继续与她的多学科团队
指导,并增加数据工程支持。无监督机器学习的认证课程将是
添加到她的职业发展计划中。她将继续她的道路,成为一名分析翻译
临床医学与临床应用信息学的交叉。肥沃的研究环境
位于圣路易斯的华盛顿大学专注于数据可用性,经验丰富的指导团队现在
整合数据工程专业知识和精心设计的职业发展计划将使巴斯克斯博士
Guillamet将实现她的长期目标,即成为一名独立资助的临床医生-研究员,利用BIG
用于开发脓毒症风险预测、监测和结果比较应用程序的数据
抗菌素耐药性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Cristina Vazquez Guillamet其他文献
Maria Cristina Vazquez Guillamet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Cristina Vazquez Guillamet', 18)}}的其他基金
Sepsis phenotypes at risk for infections caused by multidrug resistant Gram-negative bacilli: elucidating the impact of sepsis definition and patient case mix on prediction performance
脓毒症表型面临由多重耐药革兰氏阴性杆菌引起的感染风险:阐明脓毒症定义和患者病例组合对预测性能的影响
- 批准号:
10689323 - 财政年份:2020
- 资助金额:
$ 13.81万 - 项目类别:
Sepsis phenotypes at risk for infections caused by multidrug resistant Gram-negative bacilli: elucidating the impact of sepsis definition and patient case mix on prediction performance
脓毒症表型面临由多重耐药革兰氏阴性杆菌引起的感染风险:阐明脓毒症定义和患者病例组合对预测性能的影响
- 批准号:
10256063 - 财政年份:2020
- 资助金额:
$ 13.81万 - 项目类别:
Sepsis phenotypes at risk for infections caused by multidrug resistant Gram-negative bacilli: elucidating the impact of sepsis definition and patient case mix on prediction performance
脓毒症表型面临由多重耐药革兰氏阴性杆菌引起的感染风险:阐明脓毒症定义和患者病例组合对预测性能的影响
- 批准号:
10469491 - 财政年份:2020
- 资助金额:
$ 13.81万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 13.81万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 13.81万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 13.81万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 13.81万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 13.81万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 13.81万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 13.81万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 13.81万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 13.81万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 13.81万 - 项目类别:
Research Grant














{{item.name}}会员




