Sepsis phenotypes at risk for infections caused by multidrug resistant Gram-negative bacilli: elucidating the impact of sepsis definition and patient case mix on prediction performance

脓毒症表型面临由多重耐药革兰氏阴性杆菌引起的感染风险:阐明脓毒症定义和患者病例组合对预测性能的影响

基本信息

  • 批准号:
    10689323
  • 负责人:
  • 金额:
    $ 15.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-10 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT ABSTRACT Sepsis is a devastating syndrome that represents a leading cause of death, morbidity, and healthcare costs. Its impact is amplified by rising rates of antimicrobial resistance. Improving sepsis outcomes primarily results from prescribing timely antibiotics based on the estimated risk of multidrug resistance (MDR). Previous models grossly overestimated the MDR risk and exacerbated the escalating rates of antimicrobial resistance and excess mortality. The overall goal of this proposed K08 research is to identify common sepsis phenotypes that will enable better prescribing practices and standardized comparisons across hospitals, which will help practicing clinicians, researchers, healthcare institutions, and policy makers. These themes correlate with NIGMS's interest in finding innovative methods and leveraging big data to improve sepsis outcomes. Our three specific aims reflect these goals: (1) establish resistance thresholds for MDR Gram- negative bacilli (GNB) that cause sepsis, (2) assess the impact of sepsis definition on the performance of risk prediction models for MDR GNB, and (3) identify sepsis phenotypes at high risk for MDR GNB in a well-balanced cohort and assess the impact of case mix on risk prediction model performance. We will mathematically derive resistance thresholds that link population resistance rates to individual patient risk of death in sepsis caused by MDR GNB, assess factors that impact prediction performance, and incorporate rich clinical data from 15 hospitals in our healthcare system to identify stable common sepsis phenotypes. Dr. Vazquez Guillamet has training in Infectious Diseases and Critical Care Medicine and experience in antimicrobial resistance in critically ill patients. This proposal will build on her clinical work and previous research experience in finding innovative methods to solve challenging problems at the intersection of infectious diseases and critical care medicine. Dr. Vazquez Guillamet has six career objectives: (1) pursue advanced training in clinical epidemiology; (2) acquire skills in advanced linear regression and multilevel modeling; (3) learn supervised machine learning methods; (4) acquire skills in big data management in healthcare and methods to handle missing data; (5) improve scientific communication, grantsmanship, and leadership, and (6) participate in training in the responsible conduct of research. She will achieve these goals through didactic coursework, hands-on research experience, and active mentoring from experts in Infectious Diseases, Critical Care Medicine, and applied clinical informatics. She will continue to develop innovative methods to mitigate the antimicrobial resistance crisis, especially in critically ill patients, and become an analytics translator at the intersection of clinical medicine and clinical applied informatics. The fertile research environment at Washington University in St. Louis, the experienced mentorship team, and a well-crafted career development plan will enable Dr. Vazquez Guillamet to achieve her long-term goal of becoming an independently funded clinician-investigator utilizing big data to develop applications for risk prediction, surveillance, and outcome comparisons in antimicrobial resistance and sepsis.
项目摘要 脓毒症是一种毁灭性的综合征,是死亡、发病和医疗费用的主要原因。其 抗生素耐药性的上升加剧了这种影响。改善脓毒症结局主要是由于 根据估计的多药耐药性(MDR)风险及时开具抗生素处方。以前的型号 严重高估了MDR风险,加剧了抗生素耐药率和过量耐药率的上升。 mortality.这项K 08研究的总体目标是确定常见的脓毒症表型, 将使更好的处方实践和标准化的比较,在医院,这将有助于 执业临床医生、研究人员、医疗机构和政策制定者。这些主题相互关联 随着NIGMS对寻找创新方法和利用大数据改善败血症的兴趣 结果。我们的三个具体目标反映了这些目标:(1)建立耐药革兰氏耐药阈值, 阴性杆菌(GNB)引起脓毒症,(2)评估脓毒症定义对风险性能的影响 MDR GNB的预测模型,和(3)在良好平衡的模型中鉴定MDR GNB高风险的败血症表型。 队列并评估病例组合对风险预测模型性能的影响。我们将从数学上推导出 将群体耐药率与个体患者在败血症中的死亡风险联系起来的耐药阈值, MDR GNB,评估影响预测性能的因素,并整合来自15家医院的丰富临床数据 在我们的医疗保健系统中,以确定稳定的常见脓毒症表型。Vazquez Guillamet博士接受过以下培训 传染病和重症监护医学以及危重患者抗菌素耐药性的经验。 这项建议将建立在她的临床工作和以前的研究经验,在寻找创新的方法, 解决传染病和重症监护医学交叉点的挑战性问题。巴斯克斯医生 Guillamet有六个职业目标:(1)追求临床流行病学的高级培训;(2)获得以下技能: 高级线性回归和多级建模;(3)学习监督机器学习方法;(4)获取 医疗保健大数据管理技能和处理缺失数据的方法;(5)提高科学性 沟通,公关,和领导,(6)参加培训,在负责任的行为, research.她将通过教学课程,实践研究经验,并积极实现这些目标 来自传染病、重症监护医学和应用临床信息学专家的指导。她将 继续开发创新方法,以缓解抗生素耐药性危机,特别是在重症患者中, 成为临床医学和临床应用交叉点的分析翻译 信息学.圣路易斯华盛顿大学肥沃的研究环境, 团队,以及精心设计的职业发展计划将使Vazquez Guillamet博士能够实现她的长期目标 目标是成为一名独立资助的临床研究员,利用大数据开发风险应用程序 抗菌素耐药性和脓毒症的预测、监测和结果比较。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Race Does Not Impact Sepsis Outcomes When Considering Socioeconomic Factors in Multilevel Modeling.
  • DOI:
    10.1097/ccm.0000000000005217
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Guillamet, M. Cristina Vazquez;Dodda, Sai;Liu, Lei;Kollef, Marin H.;Micek, Scott T.
  • 通讯作者:
    Micek, Scott T.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maria Cristina Vazquez Guillamet其他文献

Maria Cristina Vazquez Guillamet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maria Cristina Vazquez Guillamet', 18)}}的其他基金

Sepsis phenotypes at risk for infections caused by multidrug resistant Gram-negative bacilli: elucidating the impact of sepsis definition and patient case mix on prediction performance
脓毒症表型面临由多重耐药革兰氏阴性杆菌引起的感染风险:阐明脓毒症定义和患者病例组合对预测性能的影响
  • 批准号:
    10412800
  • 财政年份:
    2020
  • 资助金额:
    $ 15.98万
  • 项目类别:
Sepsis phenotypes at risk for infections caused by multidrug resistant Gram-negative bacilli: elucidating the impact of sepsis definition and patient case mix on prediction performance
脓毒症表型面临由多重耐药革兰氏阴性杆菌引起的感染风险:阐明脓毒症定义和患者病例组合对预测性能的影响
  • 批准号:
    10256063
  • 财政年份:
    2020
  • 资助金额:
    $ 15.98万
  • 项目类别:
Sepsis phenotypes at risk for infections caused by multidrug resistant Gram-negative bacilli: elucidating the impact of sepsis definition and patient case mix on prediction performance
脓毒症表型面临由多重耐药革兰氏阴性杆菌引起的感染风险:阐明脓毒症定义和患者病例组合对预测性能的影响
  • 批准号:
    10469491
  • 财政年份:
    2020
  • 资助金额:
    $ 15.98万
  • 项目类别:

相似海外基金

SBIR Phase II: Development of a urine dipstick test that can guide immediate and appropriate antibiotic therapy for treatment of complicated urinary tract infections
SBIR II 期:开发尿液试纸测试,可以指导复杂尿路感染的立即和适当的抗生素治疗
  • 批准号:
    2213034
  • 财政年份:
    2023
  • 资助金额:
    $ 15.98万
  • 项目类别:
    Cooperative Agreement
Personalized Antibiotic Therapy in the Emergency Department: PANTHER Trial
急诊科的个性化抗生素治疗:PANTHER 试验
  • 批准号:
    10645528
  • 财政年份:
    2023
  • 资助金额:
    $ 15.98万
  • 项目类别:
Strategies for improving the efficacy of combinatorial antibiotic therapy in chronic infections
提高慢性感染联合抗生素治疗疗效的策略
  • 批准号:
    10736285
  • 财政年份:
    2023
  • 资助金额:
    $ 15.98万
  • 项目类别:
A Novel Bone Targeted Antibiotic Therapy for the Treatment of Infected Fractures
一种治疗感染性骨折的新型骨靶向抗生素疗法
  • 批准号:
    10603486
  • 财政年份:
    2023
  • 资助金额:
    $ 15.98万
  • 项目类别:
Severe Cutaneous Adverse Reactions Following Outpatient Antibiotic Therapy: A Population-based Study
门诊抗生素治疗后的严重皮肤不良反应:一项基于人群的研究
  • 批准号:
    449379
  • 财政年份:
    2020
  • 资助金额:
    $ 15.98万
  • 项目类别:
    Studentship Programs
Sex-Specific Differences in End-of-Life Burdensome Interventions and Antibiotic Therapy in Nursing Home Residents With Advanced Dementia
患有晚期痴呆症的疗养院居民的临终干预和抗生素治疗的性别差异
  • 批准号:
    422034
  • 财政年份:
    2020
  • 资助金额:
    $ 15.98万
  • 项目类别:
Optimizing outpatient parenteral antibiotic therapy to support hospital-in-the-home program across the unique environmental conditions of Australia
优化门诊肠外抗生素治疗,以支持澳大利亚独特环境条件下的家庭医院计划
  • 批准号:
    nhmrc : 1197866
  • 财政年份:
    2020
  • 资助金额:
    $ 15.98万
  • 项目类别:
    Investigator Grants
Resistance evolution in the presence of combination antibiotic therapy
联合抗生素治疗下耐药性的演变
  • 批准号:
    2241853
  • 财政年份:
    2019
  • 资助金额:
    $ 15.98万
  • 项目类别:
    Studentship
Host-pathogen interactions in antibiotic therapy for listeriosis
李斯特菌病抗生素治疗中宿主与病原体的相互作用
  • 批准号:
    18K07106
  • 财政年份:
    2018
  • 资助金额:
    $ 15.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multipurpose targeted nano-antibiotic therapy to fight tough infection in bones
多用途靶向纳米抗生素疗法可对抗骨骼中的严重感染
  • 批准号:
    9788269
  • 财政年份:
    2018
  • 资助金额:
    $ 15.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了