Modeling Homeostasis of Human Blood Metabolites
人体血液代谢物稳态建模
基本信息
- 批准号:10408272
- 负责人:
- 金额:$ 9.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdultAffectAgeBiologicalBiological MarkersBloodBlood specimenBody mass indexClinicalCollectionCommunitiesDataDemographic FactorsDiseaseDisease MarkerFailureGenderGeographyGlucoseHomeostasisHumanIndividualInvestigationMachine LearningMeasuresModelingMonitorOrganOutcomePerformanceSamplingSiteSmokingStatistical MethodsStatistical ModelsStressSystemSystems BiologyWhole OrganismWorkbasedisease diagnosisdisorder riskimprovedmetabolomicsmultidimensional datapredictive modelingrisk predictionsmall moleculeuser friendly software
项目摘要
PROJECT SUMMARY
Metabolite levels in human blood are regulated by a relatively strict system of homeostatic control. Previous
investigations of homeostasis have taken a number of approaches, and models of glucose and a few other
metabolites have been developed, typically focused on a single organ. However, while potentially extremely
useful, an accurate and quantitative model of blood metabolite levels under homeostasis does not currently exist.
It is well known that numerous demographic and clinical factors such as gender, age, BMI, smoking, etc., as
well as pre-analytical factors and many diseases, significantly affect the levels of blood metabolites. Numerous
studies in the field of metabolomics have attempted to account for the effects of many such factors. However,
efforts to quantify these effects and validate them across different studies have so far been challenging, and
resulted in consistent failures to validate discovered putative biomarkers. The challenges to integrate metabolite
profiles with clinical and demographic factors are complicated by the high dimensionality of the data and the
numerous correlations among the metabolites. Traditional statistical methods are incapable of accounting for
these factors, and hence, investigations suffer from a high false discovery rate (FDR).
To overcome these challenges, we propose to develop quantitative statistical models of blood metabolite
levels in healthy adults, and thereby produce a predictive model of homeostasis. Our preliminary work indicates
that we can predict metabolite levels with much reduced variance using the reproducibly measured levels of a
large pool of blood metabolites and clinical and demographic variables. We propose to develop sophisticated
models of homeostasis based on advanced statistical methods and evaluate their predictive performance across
different sample sets and metabolite classes.
The proposed project has four main Aims: (1) Obtain broad-based metabolomics data on blood samples
collected from geographically distinct sites to explore the effects of a range of confounding effects on metabolite
levels. (2) Model individual or biologically related groups of metabolite levels using multivariate statistical
approaches to determine the contribution of clinical/demographic and pre-analytical variables and their
predictability across collection site. (3) Investigate the interactions between metabolites and clinical/demographic
variables using machine learning approaches to identify stable metabolites and key interactions. (4) Provide the
community with user-friendly software packages for the prediction of blood metabolite levels under homeostasis.
An overall model of the metabolite concentrations in blood will be highly useful for a number of applications
that include a better understanding of systems biology at the whole organism level, and ultimately improved risk
prediction, disease diagnosis, treatment monitoring and outcomes analysis.
项目总结
人体血液中的代谢物水平受到相对严格的体内平衡控制系统的调节。上一首
对动态平衡的研究采取了许多方法,并建立了葡萄糖和其他一些模型
代谢物已经被开发出来,通常集中在单个器官上。然而,尽管潜在的极端
有用的是,目前还不存在稳态下血液代谢物水平的准确和定量模型。
众所周知,许多人口统计和临床因素,如性别、年龄、体重指数、吸烟等,如
以及分析前因素和许多疾病,显著影响血液代谢物的水平。数不胜数
代谢组学领域的研究试图解释许多这样的因素的影响。然而,
迄今为止,量化这些影响并在不同研究中验证它们的努力是具有挑战性的。
导致一直未能验证已发现的推定生物标志物。整合代谢物的挑战
具有临床和人口统计因素的档案因数据的高维度和
代谢物之间存在着大量的相关性。传统的统计方法无法解释
这些因素,因此,调查受到高错误发现率(FDR)的影响。
为了克服这些挑战,我们建议开发血液代谢物的定量统计模型
在健康成年人中的水平,从而产生一个可预测的动态平衡模型。我们的初步工作表明
我们可以使用可重复测量的代谢物水平预测代谢物水平
大量血液代谢物以及临床和人口统计学变量。我们建议开发复杂的
基于先进统计方法的动态平衡模型及其预测性能评估
不同的样本组和代谢物类别。
拟议的项目有四个主要目标:(1)获得血液样本的广泛代谢组学数据
从地理上不同的地点收集,以探索一系列混杂影响对代谢物的影响
级别。(2)使用多变量统计方法对代谢物水平的个体或生物相关群体进行建模
确定临床/人口学和分析前变量的贡献及其影响的方法
整个收集站点的可预测性。(3)研究代谢产物与临床/人口学之间的相互作用
变量使用机器学习方法来确定稳定的代谢物和关键的相互作用。(4)提供
社区具有用户友好的软件包,用于预测体内平衡状态下的血液代谢物水平。
血液中代谢物浓度的总体模型将对许多应用非常有用
这包括在整个有机体水平上更好地理解系统生物学,并最终改善风险。
预测、疾病诊断、治疗监测和结果分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL RAFTERY其他文献
DANIEL RAFTERY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL RAFTERY', 18)}}的其他基金
Multiplexed UPLC-MS/MS System for Advanced Target Metabolomics
用于高级目标代谢组学的多重 UPLC-MS/MS 系统
- 批准号:
9075163 - 财政年份:2016
- 资助金额:
$ 9.72万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 9.72万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 9.72万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 9.72万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 9.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 9.72万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 9.72万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 9.72万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 9.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 9.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 9.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)