Endophenotype Network-based Approaches to Prediction and Population-based Validation of In Silico Drug Repurposing for Alzheimer's Disease
基于内表型网络的方法对阿尔茨海默病的计算机药物重新利用进行预测和基于群体的验证
基本信息
- 批准号:10409194
- 负责人:
- 金额:$ 32.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-15 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdoptedAffectAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAlzheimer&aposs disease therapeuticAmericanAmyloidosisAnti-Inflammatory AgentsArtificial IntelligenceBayesian ModelingBindingBiologyCause of DeathCell NucleusChromatinClinicClinical DataCombination Drug TherapyCombined Modality TherapyCommunicationCommunitiesComplexDataData AnalysesData Storage and RetrievalDatabasesDementiaDevelopmentDiseaseDrug TargetingEtiologyFAIR principlesFoundationsFundingFutureGene Expression RegulationGene ProteinsGenesGeneticGenetic DiseasesGenomeGenomicsGenotypeGoalsHigh-Throughput Nucleotide SequencingHistonesHumanHuman GeneticsImmunologic TestsIncidenceInfrastructureInvestmentsKnowledgeKnowledge PortalLearningMachine LearningMedicineMethodologyMicrogliaMolecularMultiomic DataMutateNatureNetwork-basedNeurodegenerative DisordersNeurosciencesNucleotidesParentsPathogenesisPharmaceutical PreparationsPharmacologic SubstancePharmacotherapyPredispositionProteinsProteomeQuantitative Trait LociResearchResearch PersonnelRoleSignal TransductionSiteTauopathiesTechniquesTechnologyTestingTherapeutic InterventionTranslationsUnited StatesUnited States National Institutes of HealthValidationVariantbasecell typecomputational platformdeep learningdesigndigitaldrug discoverydrug repurposingdruggable targetendophenotypeexome sequencingfunctional genomicsgenetic architecturegenetic variantgenome sequencinggenome wide association studygenome-widegenomic datahuman genome sequencinghuman interactomein silicoinnovationinsightkernel methodsmolecular drug targetmolecular targeted therapiesmultimodalitymultiple omicsneuroimagingneuroinflammationnovelpopulation basedprecision medicineprotein protein interactionquantum computingresearch and developmentrisk varianttargeted treatmenttherapeutic developmenttherapy designtooltranscription factortranscriptometranscriptomicsuser-friendlyweb portal
项目摘要
PROJECT SUMMARY
Although researchers have conducted more than 400 human trials for potential treatments of Alzheimer’s
disease (AD) in the last two decades, the attrition rate is estimated at over 99%. Furthermore, the “one gene,
one drug, one disease” reductionism-informed paradigm overlooks the inherent complexity of the disease and
continues to challenge drug discovery for AD. The predisposition to AD involves a complex, polygenic, and
pleiotropic genetic architecture. Recent studies have suggested that AD often has common underlying
mechanisms and pathobiology, sharing intermediate endophenotypes with many other complex diseases.
These endophenotypes, such as amyloidosis, tauopathy and neuroinflammation, have essential roles in many
neurodegenerative diseases. Systematic identification and characterization of novel underlying pathogenesis
and endophenotype networks, more so than mutated genes, will serve as a foundation for generating actionable
targets as input for drug repurposing and rational design of combination therapy in AD. Integration of the
genome, transcriptome, proteome, and the human interactome using artificial intelligence (AI) and machine
learning (ML) are essential for such identification. Given our preliminary results, we posit that AI/ML-based
identification of likely risk genes and endophenotype network modules offer unexpected opportunities for drug
repurposing and combination therapy design in AD compared to traditional single-target approaches. To address
the underlying hypothesis, we propose to establish an AI/ML-based, multimodal analytic framework to repurpose
existing genetics, genomics and transcriptomics data generated from NIA-funded AD genome sequencing
projects for druggable target identification with two specific aims under the scope of the parent R01
(#R01AG066707). The central unifying hypothesis of this Supplement project is that a genome-wide, AI/ML
infrastructure that enables users searching, sharing, visualizing, querying, and analyzing multi-omics (including
genetics and genomics) findings can enable emerging development of molecularly targeted treatments for AD.
Aim 1 will test common variant-based risk gene and endophenotype network hypothesis in AD using multi-omics
evidence aggregation under a multiple kernel learning framework and the FAIR (Findable, Accessible,
Interoperable, and Reusable digital objects) principles. We will develop and apply AI/ML approach to identify
likely risk genes and endophenotype networks though leveraging genetic, genomic, transcriptomic, and clinical
data from AD Sequencing Project (ADSP), the AD Neuroimaging Initiative (ADNI), NIAGADS, and the AD
knowledge portal. Aim 2 will test cell type-specific risk genes and anti-inflammatory endophenotype network
hypothesis in AD using a network-based deep learning framework. Following FAIR principles, we will implement
command-line and web portal to disseminate all AI/ML toolboxes and AI/ML-ready gene/network data from Aims
1 and 2 into the AD knowledge portal and the Cleveland Clinic-IBM Quantum computing platform for accelerating
future AD genetic and multi-omics data analyses, an essential goal of the Alzheimer’s precision medicine.
1
项目摘要
尽管研究人员已经进行了400多项人体试验,以寻找治疗阿尔茨海默氏症的潜在方法,
在过去的二十年中,疾病(AD)的流失率估计超过99%。此外,“一个基因,
“一种药物,一种疾病”的简化主义范式忽视了疾病的内在复杂性,
继续挑战AD的药物发现。AD的易感性涉及一个复杂的、多基因的、
多效性遗传结构最近的研究表明,AD通常具有共同的潜在
机制和病理生物学,与许多其他复杂疾病共享中间内在表型。
这些内源性表型,如淀粉样变性、tau蛋白病和神经炎症,在许多疾病中具有重要作用。
神经退行性疾病新的潜在发病机制的系统鉴定和表征
与突变基因相比,内表型网络将成为产生可操作的
作为药物再利用和合理设计AD联合治疗的输入目标。融合
使用人工智能(AI)和机器的基因组、转录组、蛋白质组和人类相互作用组
学习(ML)对于这种识别是必不可少的。鉴于我们的初步结果,我们认为基于AI/ML的
识别可能风险基因和内表型网络模块为药物治疗提供了意想不到的机会
与传统的单靶点方法相比,AD的再利用和联合治疗设计。解决
基本假设,我们建议建立一个基于AI/ML的多模态分析框架,
现有的遗传学、基因组学和转录组学数据由国家免疫局资助的AD基因组测序产生
在母R 01范围内具有两个特定目标的可药用目标识别项目
(#R01AG066707)。这个补充项目的中心统一假设是,一个全基因组的AI/ML
使用户能够搜索、共享、可视化、查询和分析多组学(包括
遗传学和基因组学)的发现可以使AD的分子靶向治疗的新兴发展成为可能。
目的1:利用多组学技术验证AD常见变异风险基因和内表型网络假说
多核学习框架下的证据聚合和FAIR(Findable,Discriminable,
可互操作和可重用数字对象)原则。我们将开发和应用AI/ML方法来识别
可能的风险基因和内表型网络,通过利用遗传学、基因组学、转录组学和临床
数据来自AD测序项目(ADSP)、AD神经影像学倡议(ADNI)、NIAGADS和AD
知识门户。目标2将测试细胞类型特异性风险基因和抗炎内表型网络
使用基于网络的深度学习框架在AD中的假设。根据公平原则,我们将实施
命令行和Web门户,用于传播Aims的所有AI/ML工具箱和AI/ML就绪基因/网络数据
1和2进入AD知识门户和Cleveland Clinic-IBM Quantum计算平台,
未来的AD遗传和多组学数据分析,是阿尔茨海默氏症精准医学的一个重要目标。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feixiong Cheng其他文献
Feixiong Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feixiong Cheng', 18)}}的其他基金
Alzheimer's Disease and Related Dementia-like Sequelae of SARS-CoV-2 Infection: Virus-Host Interactome, Neuropathobiology, and Drug Repurposing
阿尔茨海默病和 SARS-CoV-2 感染的相关痴呆样后遗症:病毒-宿主相互作用组、神经病理生物学和药物再利用
- 批准号:
10661931 - 财政年份:2023
- 资助金额:
$ 32.2万 - 项目类别:
Microglial Activation and Inflammatory Endophenotypes Underlying Sex Differences of Alzheimer’s Disease
阿尔茨海默病性别差异背后的小胶质细胞激活和炎症内表型
- 批准号:
10755779 - 财政年份:2023
- 资助金额:
$ 32.2万 - 项目类别:
Precision Medicine Digital Twins for Alzheimer’s Target and Drug Discovery and Longevity
用于阿尔茨海默氏症靶点和药物发现及长寿的精准医学数字孪生
- 批准号:
10727793 - 财政年份:2023
- 资助金额:
$ 32.2万 - 项目类别:
TREM2 Genotype-Informed Drug Repurposing and Combination Therapy Design for Alzheimers Disease
基于 TREM2 基因型的阿尔茨海默病药物再利用和联合治疗设计
- 批准号:
10418459 - 财政年份:2022
- 资助金额:
$ 32.2万 - 项目类别:
TREM2 Genotype-Informed Drug Repurposing and Combination Therapy Design for Alzheimers Disease
基于 TREM2 基因型的阿尔茨海默病药物再利用和联合治疗设计
- 批准号:
10665664 - 财政年份:2022
- 资助金额:
$ 32.2万 - 项目类别:
Endophenotype Network-based Approaches to Prediction and Population-based Validation of in Silico Drug Repurposing for Alzheimers Disease
基于内表型网络的方法对阿尔茨海默病的计算机药物重新利用进行预测和基于群体的验证
- 批准号:
10339430 - 财政年份:2020
- 资助金额:
$ 32.2万 - 项目类别:
Endophenotype Network-based Approaches to Prediction and Population-based Validation of in Silico Drug Repurposing for Alzheimers Disease
基于内表型网络的方法对阿尔茨海默病的计算机药物重新利用进行预测和基于群体的验证
- 批准号:
10569077 - 财政年份:2020
- 资助金额:
$ 32.2万 - 项目类别:
An individualized network medicine infrastructure for precision cardio-oncology
用于精准心脏肿瘤学的个性化网络医学基础设施
- 批准号:
9755498 - 财政年份:2017
- 资助金额:
$ 32.2万 - 项目类别:
An individualized network medicine infrastructure for precision cardio-oncology
用于精准心脏肿瘤学的个性化网络医学基础设施
- 批准号:
9371272 - 财政年份:2017
- 资助金额:
$ 32.2万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 32.2万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 32.2万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 32.2万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 32.2万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 32.2万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 32.2万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 32.2万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 32.2万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 32.2万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 32.2万 - 项目类别:
Research Grant