Characterization of RNA Binding Protein Regulation in Neural Stem Cell Quiescence Exit
神经干细胞静止退出中 RNA 结合蛋白调节的表征
基本信息
- 批准号:10407981
- 负责人:
- 金额:$ 3.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:3&apos Untranslated RegionsAddressAdultAgeAgingAmino AcidsAntibodiesAntisense RNAAnxietyAttenuatedAutomobile DrivingBindingBinding ProteinsBiological AssayBrainCell CycleCell LineCellsCognitionDementiaDevelopmentDiseaseElementsEmbryoEngineeringG0 PhaseGenerationsGenetic TranscriptionGenetic TranslationGoalsHippocampus (Brain)HumanImmunoprecipitationImpaired cognitionIn VitroInjectionsIntermediate FilamentsKnock-outLaboratoriesMass Spectrum AnalysisMeasuresMediatingMedicalMental DepressionMessenger RNAMolecularMolecular and Cellular BiologyMood DisordersMusNeurologicNeuronsOpen Reading FramesPathologyPhysiciansPhysiologicalPlayPost-Transcriptional RegulationProcessProtein BiosynthesisProteinsRNARNA-Binding ProteinsRegulationReportingRepressionResearchRoleScientistShockTechniquesTraining ProgramsTranscriptTranslational RegulationTranslational RepressionTranslationsUniversitiesUntranslated RegionsVimentinWestern BlottingWisconsinage relatedclinical practicecognitive functionimprovedin vivoknock-downmulticatalytic endopeptidase complexnerve stem cellneurogenesisnewborn neuronnoveloverexpressionprogramsprotein aggregationpsychologicresponsible research conductself-renewalskillsstemstem cellstherapeutic target
项目摘要
PROJECT SUMMARY/ABSTRACT
Neurogenesis, the lifelong generation of newborn neurons, occurs in neural stem cell (NSC) niches in
the brain. A decline in neurogenesis occurs with aging but also contributes to disease pathologies such as
dementia, anxiety and depression. This attenuated neurogenesis is largely the result of the increased barrier to
NSC quiescence exit, the process of NSC activation and cell cycle reentry. NSCs dynamically transition between
quiescent and activated cell states; quiescent NSCs (qNSCs) are in a reversible G0 state of the cell cycle
whereas activated NSCs (aNSCs) divide to self-renew or produce new neurons. Despite quiescence exit being
the rate-limiting step in neurogenesis, its mechanisms are not well understood.
One key intrinsic mechanism influencing quiescence exit is aggregated protein clearance through the
formation of aggresomes which are surrounded by the intermediate filament vimentin. In the absence of vimentin
protein, there is decreased qNSC activation both in vivo and in vitro, suggesting that vimentin plays a crucial role
in mediating quiescence exit. Interestingly, qNSCs uniquely contain high vimentin mRNA and low protein levels,
compared to aNSCs, suggesting that the translational repression of vimentin mRNA in qNSCs is rapidly reversed
during quiescence exit to upregulate vimentin protein, facilitating the formation of aggresomes. This indicates
that the regulation of vimentin may be uniquely controlled in the transition between cell states. Thus, the
identification of the mechanisms underlying this post-transcriptional regulation during quiescence exit will reveal
processes that may be targeted to increase neurogenesis.
The objective of this proposal is to identify key translational regulators, specifically RNA binding
proteins (RBPs), controlling vimentin mRNA translation during NSC quiescence exit. We will characterize
RBPs that bind vimentin mRNA preferentially in qNSCs, and establish their functional roles on vimentin mRNA
translation, with the eventual goal of correlating post transcriptional mechanisms with the physiologic relevance
of enhanced qNSC activation both in vitro and in vivo. Completion of this project will broaden the understanding
of the molecular mechanisms underlying qNSC activation and present a potential novel mammalian therapeutic
target to increase neurogenesis, with the goals of improving cognitive function with age. In addition to this
research, the University of Wisconsin-Madison Medical Scientist Training Program and the Cellular and
Molecular Biology graduate program will provide opportunities for advancing my skills in laboratory techniques,
responsible conduct of research, professional development, and clinical practice necessary to become a
successful independent Physician Scientist.
项目总结/摘要
神经发生,新生神经元的终身生成,发生在神经干细胞(NSC)的小生境中,
大脑神经发生的下降随着年龄的增长而发生,但也有助于疾病病理,如
痴呆症,焦虑症和抑郁症这种减弱的神经发生在很大程度上是由于增加的屏障,
NSC的休眠退出、NSC的激活和细胞周期的重新进入。神经干细胞在
静止和活化细胞状态;静止NSC(qNSC)处于细胞周期的可逆G 0状态
而活化的NSC(aNSC)分裂以自我更新或产生新的神经元。尽管静止出口
作为神经发生的限速步骤,其机制尚不清楚。
影响静止退出的一个关键内在机制是聚集的蛋白质通过
形成被中间丝波形蛋白包围的侵袭体。在缺乏波形蛋白的情况下,
在体内和体外qNSC的激活都减少,表明波形蛋白在体内起着至关重要的作用。
在调解平静的出口。有趣的是,qNSC独特地含有高波形蛋白mRNA和低蛋白水平,
与aNSC相比,表明qNSC中波形蛋白mRNA的翻译抑制被迅速逆转,
在静止期退出时上调波形蛋白,促进侵袭体的形成。这表明
波形蛋白的调节可能在细胞状态之间的转换中受到独特的控制。因此
对这种转录后调控机制的识别将揭示出
这些过程可能被靶向以增加神经发生。
这个建议的目的是确定关键的翻译调节,特别是RNA结合
蛋白质(RBP),控制波形蛋白mRNA的翻译在NSC静止退出。我们将描述
RBP在qNSCs中优先结合波形蛋白mRNA,并确定其对波形蛋白mRNA的功能作用
翻译,最终目标是将转录后机制与生理相关性相关联,
增强的qNSC激活在体外和体内。本项目的完成将拓宽对
qNSC激活的分子机制,并提出了一种潜在的新型哺乳动物治疗药物
目标是增加神经发生,目的是随着年龄的增长改善认知功能。除此之外
研究,威斯康星大学麦迪逊分校医学科学家培训计划和细胞和
分子生物学研究生课程将提供机会,提高我的技能,在实验室技术,
负责任的研究,专业发展和临床实践,成为一个
成功的独立医生科学家。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Moving CNS axon growth and regeneration research into human model systems.
- DOI:10.3389/fnins.2023.1198041
- 发表时间:2023
- 期刊:
- 影响因子:4.3
- 作者:Lear, Bo P.;Moore, Darcie L.
- 通讯作者:Moore, Darcie L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bo Peng Lear其他文献
Bo Peng Lear的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Impact of alternative polyadenylation of 3'-untranslated regions in the PI3K/AKT cascade on microRNA
PI3K/AKT 级联中 3-非翻译区的替代多聚腺苷酸化对 microRNA 的影响
- 批准号:
573541-2022 - 财政年份:2022
- 资助金额:
$ 3.08万 - 项目类别:
University Undergraduate Student Research Awards
How do untranslated regions of cannabinoid receptor type 1 mRNA determine receptor subcellular localisation and function?
1 型大麻素受体 mRNA 的非翻译区如何决定受体亚细胞定位和功能?
- 批准号:
2744317 - 财政年份:2022
- 资助金额:
$ 3.08万 - 项目类别:
Studentship
MICA:Synthetic untranslated regions for direct delivery of therapeutic mRNAs
MICA:用于直接递送治疗性 mRNA 的合成非翻译区
- 批准号:
MR/V010948/1 - 财政年份:2021
- 资助金额:
$ 3.08万 - 项目类别:
Research Grant
Translational Control by 5'-untranslated regions
5-非翻译区域的翻译控制
- 批准号:
10019570 - 财政年份:2019
- 资助金额:
$ 3.08万 - 项目类别:
Translational Control by 5'-untranslated regions
5-非翻译区域的翻译控制
- 批准号:
10223370 - 财政年份:2019
- 资助金额:
$ 3.08万 - 项目类别:
Translational Control by 5'-untranslated regions
5-非翻译区域的翻译控制
- 批准号:
10455108 - 财政年份:2019
- 资助金额:
$ 3.08万 - 项目类别:
Synergistic microRNA-binding sites, and 3' untranslated regions: a dialogue of silence
协同的 microRNA 结合位点和 3 非翻译区:沉默的对话
- 批准号:
255762 - 财政年份:2012
- 资助金额:
$ 3.08万 - 项目类别:
Operating Grants
Analysis of long untranslated regions in Nipah virus genome
尼帕病毒基因组长非翻译区分析
- 批准号:
20790351 - 财政年份:2008
- 资助金额:
$ 3.08万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Search for mRNA elements involved in the compatibility between 5' untranslated regions and coding regions in chloroplast translation
寻找参与叶绿体翻译中 5 非翻译区和编码区之间兼容性的 mRNA 元件
- 批准号:
19370021 - 财政年份:2007
- 资助金额:
$ 3.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Post-transcriptional Regulation of PPAR-g Expression by 5'-Untranslated Regions
5-非翻译区对 PPAR-g 表达的转录后调控
- 批准号:
7131841 - 财政年份:2006
- 资助金额:
$ 3.08万 - 项目类别: