Advancing Multi-Omics and Electronic Health Records Computational Methodologies
推进多组学和电子健康记录计算方法
基本信息
- 批准号:10408099
- 负责人:
- 金额:$ 32.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-07 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAll of Us Research ProgramAllelesBiologicalCatalogsChromatinComplexComputing MethodologiesDNADataData SetDevelopmentDisciplineDiseaseElectronic Health RecordEthnic groupExpression ProfilingGene ExpressionGeneticGenetic VariationGenetic studyGenomic medicineGenomicsHeterogeneityHumanHuman GeneticsImageLinkMachine LearningMendelian randomizationMethodological StudiesMethodologyMethylationModelingMolecularMolecular AnalysisNaturePerformancePhenotypePopulationPopulation HeterogeneityRNARegulationRegulatory ElementResearchResearch ProposalsResourcesRoboticsSingle Nucleotide PolymorphismSoftware ToolsTherapeuticTissuesTrainingTranslational ResearchUnderrepresented PopulationsVariantbasebiobankcausal modelcell typecomorbiditycomputerized toolsdata repositorydeep learningdisorder riskfunctional genomicsgenetic analysisgenetic architecturegenetic associationgenetic epidemiologygenetic variantgenome wide association studygenomic datahigh dimensionalityhistone modificationhuman genomicsimprovedmulti-ethnicmultiple omicsnovel therapeutic interventionphenomephenomicspleiotropismprecision medicinepredictive modelingprotein metabolitepublic health relevancerecruitrepositoryresponsetraittranscriptome
项目摘要
PROJECT SUMMARY
Phenomic advances from large-scale electronic health records (EHR) linked to DNA
biobanks have pioneered an efficient approach to genetic discovery that has transformed
human genetic studies, with the enormous potential to provide constraints on relevant biological
mechanisms on a wide spectrum of human phenotypes. Nevertheless, our understanding of the
downstream molecular consequences of genetic associations remains limited and impedes our
ability to develop novel therapeutic strategies for complex diseases. Given their enormous
discovery potential for human genomics and precision medicine, genetic analyses in diverse
populations offer unprecedented opportunities to identify causal genetic mechanisms underlying
human trait variation.
This research proposal aims to address these convergent developments and critical
gaps and to exert a powerful influence on efforts to expand our understanding of disease
mechanisms and therapeutic possibilities. Here we hypothesize that a comprehensive multi-
omic, phenomic, and trans-ethnic computational methodology will provide a robust and rigorous
framework. This proposal thus has the following aims:
AIM 1: Develop a regularized regression based methodology and a deep learning framework to
improve characterization of the genetic architecture of gene expression and to build robust
prediction models, extending a Transcriptome-Wide Association Study (TWAS) methodology
(called PrediXcan) that we developed.
AIM 2: Develop statistical causal modeling of trait-associated genetic variation through a
convergent TWAS and Mendelian Randomization approach and apply it to thousands of human
traits with available GWAS and EHR data.
AIM 3: Develop analytic approaches and software tools to further genetic analyses in admixed
and multi-ethnic populations and to lay the groundwork for trans-ethnic multi-omic
methodologies, using EHR data (e.g., BioVU, UK Biobank, All of Us).
项目摘要
与DNA相关的大规模电子健康记录(EHR)的表型学进展
生物库开创了一种有效的基因发现方法,
人类遗传学研究,具有巨大的潜力,提供有关生物学的限制,
广泛的人类表型的机制。然而,我们对
遗传关联的下游分子后果仍然有限,并阻碍了我们的研究。
为复杂疾病开发新的治疗策略的能力。鉴于其巨大的
人类基因组学和精准医学的发现潜力,各种基因分析
人口提供了前所未有的机会,以确定因果遗传机制的基础
人类性状变异
这项研究提案旨在解决这些趋同的发展和关键
并对扩大我们对疾病的理解的努力施加强大的影响
机制和治疗的可能性。在这里,我们假设一个全面的多-
组学、表型学和跨种族计算方法将提供一个强大而严格的
框架.因此,这项建议的目的如下:
目标1:开发基于正则化回归的方法和深度学习框架,
改进基因表达的遗传结构的表征,
预测模型,扩展了全转录组关联研究(TWAS)方法
(称为PrediXcan)。
目的2:通过一个统计学模型,
融合TWAS和孟德尔随机化方法,并将其应用于数千人
性状与可用的GWAS和EHR数据。
目的3:开发分析方法和软件工具,以进一步分析混合
和多民族人口,并为跨民族的多民族经济奠定基础,
方法,使用EHR数据(例如,BioVU,UK Biobank,All of Us)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric R Gamazon其他文献
ラウンドテーブル アナボリック・アンドロジェニック・ステロイド(パート2)
圆桌会议合成代谢和雄激素类固醇(第 2 部分)
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Alisa Manning;Heather M Highland;J. Gasser;Xueling Sim;Taru Tukiainen;Pierre Fontanillas;Niels Grarup;Manuel A Rivas;Anubha Mahajan;Adam E Locke;Pablo Cingolani;Tune H Pers;Ana Viñuela;Andrew Brown;Ying Wu;Jason Flannick;Christian Fuchsberger;Eric R Gamazon;Kyle J Gaulton;Hae Kyung Im;Tanya M Teslovich;Thomas W Blackwell;Jette Bork;Noël P Burtt;Yuhui Chen;T. Green;Christopher Hartl;Hyun Min Kang;Ashish Kumar;Claes Ladenvall;Clement Ma;Loukas Moutsianas;Richard D Pearson;John R B Perry;N. Rayner;Neil R Robertson;Laura J Scott;Martijn van de Bunt;Johan G Eriksson;Antti Jula;Seppo Koskinen;Terho Lehtimäki;Aarno Palotie;Olli T Raitakari;Suzanne BR Jacobs;J. Wessel;Audrey Y Chu;Robert A. Scott;Mark O Goodarzi;Christine Blancher;Gemma Buck;David Buck;Peter S Chines;Stacey Gabriel;Anette P Gjesing;Christopher J Groves;Mette Hollensted;Jeroen R Huyghe;Anne U Jackson;Goo Jun;Johanne Marie Justesen;Massimo Mangino;J. Murphy;Matt Neville;Robert Onofrio;Kerrin S Small;Heather M Stringham;Joseph Trakalo;Eric Banks;Jason Carey;Mauricio O Carneiro;Mark DePristo;Yossi Farjoun;Timothy J. Fennell;Jacqueline I Goldstein;George Grant;Martin Hrabé de Angelis;J. Maguire;Benjamin M Neale;Ryan Poplin;Shaun M Purcell;Thomas Schwarzmayr;Khalid Shakir;Joshua D Smith;Tim M. Strom;Thomas Wieland;Jaana Lindstrom;Ivan Brandslund;Cramer Christensen;Gabriela L Surdulescu;Timo A Lakka;Alex S F Doney;Peter Nilsson;Nicholas J Wareham;C. Langenberg;Tibor V Varga;Paul W Franks;Olov Rolandsson;Anders H Rosengren;Vidya S Farook;Farook Thameem;Sobha Puppala;Satish Kumar;Donna M Lehman;Christopher P Jenkinson;Joanne E Curran;Daniel Esten Hale;Sharon P Fowler;Rector Arya;Ralph A. DeFronzo;Hanna E Abboud;Ann;Pamela J Hicks;Nicholette D Palmer;Maggie C Y Ng;Donald W Bowden;Barry I Freedman;Tõnu Esko;Reedik Mägi;Lili Milani;Evelin Mihailov;Andres Metspalu;Narisu Narisu;Leena Kinnunen;Lori L Bonnycastle;Amy Swift;Dorota Pasko;Andrew R Wood;João Fadista;Toni I Pollin;Nir Barzilai;Gil Atzmon;Benjamin Glaser;Barbara Thorand;Konstantin Strauch;Annette Peters;Michael Roden;Martina Müller;L. Liang;Jennifer Kriebel;Thomas Illig;Harald Grallert;Christian Gieger;Christa Meisinger;Lars Lannfelt;Solomon K Musani;Michael D. Griswold;Herman A Taylor;G. Wilson;Adolfo Correa;Heikki Oksa;W. R. Scott;Uzma Afzal;Sian;Marie Loh;John C Chambers;Jobanpreet Sehmi;Jaspal Singh Kooner;Benjamin;Lehne;Yoon;Shin;Cho;Jong;Lee;Bok;Han;Annemari Käräjämäki;Qi Qi;Lu Qi;Jinyan Huang;Frank B. Hu;O. Melander;Marju Orho;David Aguilar;Tien Yin Wong;Jianjun Liu;Chiea;Kee Seng Chia;W. Y. Lim;Chingwen Cheng;E. Chan;E. S. Tai;Tin Aung;Allan Linneberg;Bo Isomaa;T. Meitinger;T. Tuomi;Liisa Hakaste;Jasmina Kravic;Marit E Jørgensen;T. Lauritzen;Panos Deloukas;Kathleen E Stirrups;Katharine R Owen;Andrew J Farmer;Timothy M Frayling;Stephen P O'Rahilly;M. Walker;Jonathan C Levy;Dylan Hodgkiss;Andrew T. Hattersley;Teemu Kuulasmaa;Inês Barroso;Dwaipayan Bharadwaj;Juliana Chan;G. R. Chandak;Mark J Daly;Peter J Donnelly;Shah B Ebrahim;Paul Elliott;Tasha Fingerlin;Philippe Froguel;Cheng Hu;Weiping Jia;R. C. Ma;Gilean McVean;Taesung Park;D. Prabhakaran;Manjinder Sandhu;J. Scott;Rob Sladek;Nikhil Tandon;Yik Ying Teo;Eleftheria Zeggini;Richard M Watanabe;Heikki A Koistinen;Y. A. Kesaniemi;Matti Uusitupa;Tim Spector;Veikko Salomaa;Rainer Rauramaa;Colin N A Palmer;Inga Prokopenko;Andrew D Morris;Richard N Bergman;Francis S. Collins;Lars Lind;Erik;Ingelsson;Jaakko;Tuomilehto;Fredrik;Karpe;Leif;Groop;Torben Jørgensen;Torben Hansen;Oluf Pedersen;Johanna Kuusisto;Gonçalo Abecasis - 通讯作者:
Gonçalo Abecasis
Eric R Gamazon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric R Gamazon', 18)}}的其他基金
Advancing drug repositioning and development for Alzheimer's Disease using functional genomics and computational phenomics
利用功能基因组学和计算表型组学推进阿尔茨海默病的药物重新定位和开发
- 批准号:
10459749 - 财政年份:2021
- 资助金额:
$ 32.92万 - 项目类别:
Haplotype-aware models of gene and isoform expression with application to genetic studies of disease in diverse populations
基因和亚型表达的单倍型感知模型及其应用于不同人群疾病遗传学研究
- 批准号:
10540421 - 财政年份:2021
- 资助金额:
$ 32.92万 - 项目类别:
Advancing drug repositioning and development for Alzheimer's Disease using functional genomics and computational phenomics
利用功能基因组学和计算表型组学推进阿尔茨海默病的药物重新定位和开发
- 批准号:
10480887 - 财政年份:2021
- 资助金额:
$ 32.92万 - 项目类别:
Haplotype-aware models of gene and isoform expression with application to genetic studies of disease in diverse populations
基因和亚型表达的单倍型感知模型及其应用于不同人群疾病遗传学研究
- 批准号:
10390207 - 财政年份:2021
- 资助金额:
$ 32.92万 - 项目类别:
Haplotype-aware models of gene and isoform expression with application to genetic studies of disease in diverse populations
基因和亚型表达的单倍型感知模型及其应用于不同人群疾病遗传学研究
- 批准号:
10360462 - 财政年份:2021
- 资助金额:
$ 32.92万 - 项目类别:
Advancing Multi-Omics and Electronic Health Records Computational Methodologies
推进多组学和电子健康记录计算方法
- 批准号:
9979509 - 财政年份:2020
- 资助金额:
$ 32.92万 - 项目类别:
Advancing Multi-Omics and Electronic Health Records Computational Methodologies
推进多组学和电子健康记录计算方法
- 批准号:
10653197 - 财政年份:2020
- 资助金额:
$ 32.92万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 32.92万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 32.92万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 32.92万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 32.92万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 32.92万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 32.92万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 32.92万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 32.92万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 32.92万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 32.92万 - 项目类别:
Research Grant














{{item.name}}会员




