Advancing Multi-Omics and Electronic Health Records Computational Methodologies

推进多组学和电子健康记录计算方法

基本信息

  • 批准号:
    9979509
  • 负责人:
  • 金额:
    $ 33.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-07 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Phenomic advances from large-scale electronic health records (EHR) linked to DNA biobanks have pioneered an efficient approach to genetic discovery that has transformed human genetic studies, with the enormous potential to provide constraints on relevant biological mechanisms on a wide spectrum of human phenotypes. Nevertheless, our understanding of the downstream molecular consequences of genetic associations remains limited and impedes our ability to develop novel therapeutic strategies for complex diseases. Given their enormous discovery potential for human genomics and precision medicine, genetic analyses in diverse populations offer unprecedented opportunities to identify causal genetic mechanisms underlying human trait variation. This research proposal aims to address these convergent developments and critical gaps and to exert a powerful influence on efforts to expand our understanding of disease mechanisms and therapeutic possibilities. Here we hypothesize that a comprehensive multi- omic, phenomic, and trans-ethnic computational methodology will provide a robust and rigorous framework. This proposal thus has the following aims: AIM 1: Develop a regularized regression based methodology and a deep learning framework to improve characterization of the genetic architecture of gene expression and to build robust prediction models, extending a Transcriptome-Wide Association Study (TWAS) methodology (called PrediXcan) that we developed. AIM 2: Develop statistical causal modeling of trait-associated genetic variation through a convergent TWAS and Mendelian Randomization approach and apply it to thousands of human traits with available GWAS and EHR data. AIM 3: Develop analytic approaches and software tools to further genetic analyses in admixed and multi-ethnic populations and to lay the groundwork for trans-ethnic multi-omic methodologies, using EHR data (e.g., BioVU, UK Biobank, All of Us).
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric R Gamazon其他文献

ラウンドテーブル アナボリック・アンドロジェニック・ステロイド(パート2)
圆桌会议合成代谢和雄激素类固醇(第 2 部分)
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alisa Manning;Heather M Highland;J. Gasser;Xueling Sim;Taru Tukiainen;Pierre Fontanillas;Niels Grarup;Manuel A Rivas;Anubha Mahajan;Adam E Locke;Pablo Cingolani;Tune H Pers;Ana Viñuela;Andrew Brown;Ying Wu;Jason Flannick;Christian Fuchsberger;Eric R Gamazon;Kyle J Gaulton;Hae Kyung Im;Tanya M Teslovich;Thomas W Blackwell;Jette Bork;Noël P Burtt;Yuhui Chen;T. Green;Christopher Hartl;Hyun Min Kang;Ashish Kumar;Claes Ladenvall;Clement Ma;Loukas Moutsianas;Richard D Pearson;John R B Perry;N. Rayner;Neil R Robertson;Laura J Scott;Martijn van de Bunt;Johan G Eriksson;Antti Jula;Seppo Koskinen;Terho Lehtimäki;Aarno Palotie;Olli T Raitakari;Suzanne BR Jacobs;J. Wessel;Audrey Y Chu;Robert A. Scott;Mark O Goodarzi;Christine Blancher;Gemma Buck;David Buck;Peter S Chines;Stacey Gabriel;Anette P Gjesing;Christopher J Groves;Mette Hollensted;Jeroen R Huyghe;Anne U Jackson;Goo Jun;Johanne Marie Justesen;Massimo Mangino;J. Murphy;Matt Neville;Robert Onofrio;Kerrin S Small;Heather M Stringham;Joseph Trakalo;Eric Banks;Jason Carey;Mauricio O Carneiro;Mark DePristo;Yossi Farjoun;Timothy J. Fennell;Jacqueline I Goldstein;George Grant;Martin Hrabé de Angelis;J. Maguire;Benjamin M Neale;Ryan Poplin;Shaun M Purcell;Thomas Schwarzmayr;Khalid Shakir;Joshua D Smith;Tim M. Strom;Thomas Wieland;Jaana Lindstrom;Ivan Brandslund;Cramer Christensen;Gabriela L Surdulescu;Timo A Lakka;Alex S F Doney;Peter Nilsson;Nicholas J Wareham;C. Langenberg;Tibor V Varga;Paul W Franks;Olov Rolandsson;Anders H Rosengren;Vidya S Farook;Farook Thameem;Sobha Puppala;Satish Kumar;Donna M Lehman;Christopher P Jenkinson;Joanne E Curran;Daniel Esten Hale;Sharon P Fowler;Rector Arya;Ralph A. DeFronzo;Hanna E Abboud;Ann;Pamela J Hicks;Nicholette D Palmer;Maggie C Y Ng;Donald W Bowden;Barry I Freedman;Tõnu Esko;Reedik Mägi;Lili Milani;Evelin Mihailov;Andres Metspalu;Narisu Narisu;Leena Kinnunen;Lori L Bonnycastle;Amy Swift;Dorota Pasko;Andrew R Wood;João Fadista;Toni I Pollin;Nir Barzilai;Gil Atzmon;Benjamin Glaser;Barbara Thorand;Konstantin Strauch;Annette Peters;Michael Roden;Martina Müller;L. Liang;Jennifer Kriebel;Thomas Illig;Harald Grallert;Christian Gieger;Christa Meisinger;Lars Lannfelt;Solomon K Musani;Michael D. Griswold;Herman A Taylor;G. Wilson;Adolfo Correa;Heikki Oksa;W. R. Scott;Uzma Afzal;Sian;Marie Loh;John C Chambers;Jobanpreet Sehmi;Jaspal Singh Kooner;Benjamin;Lehne;Yoon;Shin;Cho;Jong;Lee;Bok;Han;Annemari Käräjämäki;Qi Qi;Lu Qi;Jinyan Huang;Frank B. Hu;O. Melander;Marju Orho;David Aguilar;Tien Yin Wong;Jianjun Liu;Chiea;Kee Seng Chia;W. Y. Lim;Chingwen Cheng;E. Chan;E. S. Tai;Tin Aung;Allan Linneberg;Bo Isomaa;T. Meitinger;T. Tuomi;Liisa Hakaste;Jasmina Kravic;Marit E Jørgensen;T. Lauritzen;Panos Deloukas;Kathleen E Stirrups;Katharine R Owen;Andrew J Farmer;Timothy M Frayling;Stephen P O'Rahilly;M. Walker;Jonathan C Levy;Dylan Hodgkiss;Andrew T. Hattersley;Teemu Kuulasmaa;Inês Barroso;Dwaipayan Bharadwaj;Juliana Chan;G. R. Chandak;Mark J Daly;Peter J Donnelly;Shah B Ebrahim;Paul Elliott;Tasha Fingerlin;Philippe Froguel;Cheng Hu;Weiping Jia;R. C. Ma;Gilean McVean;Taesung Park;D. Prabhakaran;Manjinder Sandhu;J. Scott;Rob Sladek;Nikhil Tandon;Yik Ying Teo;Eleftheria Zeggini;Richard M Watanabe;Heikki A Koistinen;Y. A. Kesaniemi;Matti Uusitupa;Tim Spector;Veikko Salomaa;Rainer Rauramaa;Colin N A Palmer;Inga Prokopenko;Andrew D Morris;Richard N Bergman;Francis S. Collins;Lars Lind;Erik;Ingelsson;Jaakko;Tuomilehto;Fredrik;Karpe;Leif;Groop;Torben Jørgensen;Torben Hansen;Oluf Pedersen;Johanna Kuusisto;Gonçalo Abecasis
  • 通讯作者:
    Gonçalo Abecasis

Eric R Gamazon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric R Gamazon', 18)}}的其他基金

Advancing drug repositioning and development for Alzheimer's Disease using functional genomics and computational phenomics
利用功能基因组学和计算表型组学推进阿尔茨海默病的药物重新定位和开发
  • 批准号:
    10459749
  • 财政年份:
    2021
  • 资助金额:
    $ 33.07万
  • 项目类别:
Haplotype-aware models of gene and isoform expression with application to genetic studies of disease in diverse populations
基因和亚型表达的单倍型感知模型及其应用于不同人群疾病遗传学研究
  • 批准号:
    10540421
  • 财政年份:
    2021
  • 资助金额:
    $ 33.07万
  • 项目类别:
Advancing drug repositioning and development for Alzheimer's Disease using functional genomics and computational phenomics
利用功能基因组学和计算表型组学推进阿尔茨海默病的药物重新定位和开发
  • 批准号:
    10480887
  • 财政年份:
    2021
  • 资助金额:
    $ 33.07万
  • 项目类别:
Haplotype-aware models of gene and isoform expression with application to genetic studies of disease in diverse populations
基因和亚型表达的单倍型感知模型及其应用于不同人群疾病遗传学研究
  • 批准号:
    10390207
  • 财政年份:
    2021
  • 资助金额:
    $ 33.07万
  • 项目类别:
Haplotype-aware models of gene and isoform expression with application to genetic studies of disease in diverse populations
基因和亚型表达的单倍型感知模型及其应用于不同人群疾病遗传学研究
  • 批准号:
    10360462
  • 财政年份:
    2021
  • 资助金额:
    $ 33.07万
  • 项目类别:
Advancing Multi-Omics and Electronic Health Records Computational Methodologies
推进多组学和电子健康记录计算方法
  • 批准号:
    10408099
  • 财政年份:
    2020
  • 资助金额:
    $ 33.07万
  • 项目类别:
Advancing Multi-Omics and Electronic Health Records Computational Methodologies
推进多组学和电子健康记录计算方法
  • 批准号:
    10653197
  • 财政年份:
    2020
  • 资助金额:
    $ 33.07万
  • 项目类别:
Functional Genomics: A Phenome-wide Survey
功能基因组学:全表型组调查
  • 批准号:
    9815133
  • 财政年份:
    2019
  • 资助金额:
    $ 33.07万
  • 项目类别:
Functional Genomics: A Phenome-wide Survey
功能基因组学:全表型组调查
  • 批准号:
    10443807
  • 财政年份:
    2019
  • 资助金额:
    $ 33.07万
  • 项目类别:
Functional Genomics: A Phenome-wide Survey
功能基因组学:全表型组调查
  • 批准号:
    10652447
  • 财政年份:
    2019
  • 资助金额:
    $ 33.07万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.07万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 33.07万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 33.07万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 33.07万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 33.07万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 33.07万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 33.07万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 33.07万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 33.07万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 33.07万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了