Structure-function analysis for elucidating pathogenicity of cardiac ryanodine receptor genetic variants
结构功能分析阐明心脏兰尼碱受体遗传变异的致病性
基本信息
- 批准号:10407960
- 负责人:
- 金额:$ 76.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:ArrhythmiaCaffeineCalciumCardiacCardiac MyocytesCatecholaminergic Polymorphic Ventricular TachycardiaCell physiologyCellsClinicalClinical DataComputer softwareCouplingCryoelectron MicroscopyCyclic AMP-Dependent Protein KinasesDataDatabasesDefectDiagnosisDiastoleDiseaseEgtazic AcidElectronicsEngineeringEnzymesEventExerciseFKBP1B geneFunctional disorderHeart failureIn VitroInheritedIon ChannelIon Channel GatingLifeLinkLipid BilayersMacromolecular ComplexesMeasurementMeasuresMembraneMethodsModelingMutationMyocardiumOryctolagus cuniculusPathogenicityPathologicPatientsPhenotypePhosphorylationPost-Translational Protein ProcessingProbabilityProcessProteinsProtomerPublishingRare DiseasesRecombinantsReportingResearchResearch Project SummariesResolutionRyR1RyR3Ryanodine Receptor Calcium Release ChannelSarcoplasmic ReticulumSemiconductorsSkeletal MuscleStressStructureStructure-Activity RelationshipSudden DeathSurfaceSystemTechnologyTestingTransgenic MiceVariantbasebiophysical propertiesdaltondesigngenetic varianthigh throughput screeningimprovedinnovationinsightintegrated circuitmetal oxidemillisecondmolecular modelingmutantmutation screeningnanosecondnew technologynovelpublic databasereconstructionsearchable databasesudden cardiac deaththerapy developmentvariant of unknown significance
项目摘要
Project summary
The research proposed in this application is designed to elucidate the structure-function relationships
of a form of exercise-induced sudden death known as catecholaminergic polymorphic ventricular
tachycardia (CPVT), caused by mutations in the Type-2 ryanodine receptor (RyR2)/calcium release
channel. RyR2 channels are required for the release of calcium (Ca2+) from intracellular stores, a process
that triggers cellular functions including excitation-contraction (EC) coupling in the cardiac muscle. RyR2,
along with RyR1 and RyR3, are the largest known ion channels, comprised of the four identical ~565 kDa
channel-forming protomers, as well as regulatory subunits, enzymes, and their respective
targeting/anchoring proteins in a macromolecular complex that exceeds three million daltons. It is known
that RyR2 mutations cause arrhythmias including exercise-induced sudden death, or CPVT, and stress-
induced post-translational modifications of RyR2 contribute to both CPVT and heart failure progression.
The applicants have recently obtained near-atomic-level resolution cryo-electron microscopy (cryo-EM)
reconstructions of Type-1 RyR (RyR1) from highly purified rabbit skeletal muscle in both the closed and the
open states, defining the transmembrane pore in unprecedented detail and placing all cytosolic domains as
tertiary folds, including a Ca2+ domain. Using modeling software, the structure of RyR2 has been modeled
based on homology with RyR1. We propose to study the localization, structural effects, and function of at
least 11 representative pathogenic CPVT mutations, in order to develop a system for understanding how
pathogenic genetic variants in different regions of the channel cause clinical disease. These studies will be
conducted by solving cryo-EM structures of mutant RyR2 channels and by functionally testing these
mutations using a novel, high bandwidth, high-throughput lipid bilayer technology developed by our team.
This technology is capable of identifying channel opening events with nanosecond resolution (compared to
current single channel current resolution of millisecond resolution). We will then develop a database of all
known genetic variants CPVT-associated and systematically engineer these mutations into recombinant
RyR2 in order to study these channels using our novel high-throughput lipid bilayer measurement system.
The data from this project will be useful for understanding the underlying mechanisms of CPVT. It will
provide an approach that can be used to develop therapies for CPVT. It will advance our understanding of
novel technologies for studying other diseases caused by RyR2 dysfunction and for studying other ion
channels.
项目摘要
本申请中提出的研究旨在阐明结构-功能关系
一种运动引起的猝死称为儿茶酚胺能多形心室肌
心动过速(CPVT),由2型兰尼碱受体(RyR 2)突变/钙释放引起
频道RyR 2通道是从细胞内储存释放钙(Ca 2+)所必需的,这是一个过程,
其触发细胞功能,包括心肌中的兴奋-收缩(EC)偶联。RyR2,
与RyR 1和RyR 3沿着是已知最大的离子通道,由四个相同的~565 kDa的
通道形成原体,以及调节亚基,酶,和它们各自的
靶向/锚定蛋白质的大分子复合物,超过三百万道尔顿。已知
RyR 2突变会导致心律失常,包括运动诱发的猝死或CPVT,以及压力-
诱导的RyR 2翻译后修饰有助于CPVT和心力衰竭进展。
申请人最近获得了近原子级分辨率的低温电子显微镜(cryo-EM)
从高度纯化的兔骨骼肌中重建1型RyR(RyR 1),
开放状态,以前所未有的细节定义跨膜孔,并将所有胞质结构域作为
三级折叠,包括Ca 2+结构域。使用建模软件,对RyR 2的结构进行了建模
与RyR 1同源。我们建议研究at的定位,结构效应和功能
至少11个代表性的致病性CPVT突变,以开发一个系统,了解如何
不同区域的致病性遗传变异导致临床疾病。这些研究报告将
通过解决突变体RyR 2通道的cryo-EM结构并通过功能测试这些
使用我们团队开发的新型、高带宽、高通量脂质双层技术进行突变。
该技术能够以纳秒分辨率识别通道开放事件(与常规技术相比)。
当前单通道当前分辨率为毫秒分辨率)。我们将建立一个数据库,
已知的CPVT相关的遗传变异体,并将这些突变系统地工程改造成重组
RyR 2,以便使用我们的新型高通量脂质双层测量系统研究这些通道。
本研究的数据将有助于了解CPVT的潜在机制。它将
提供了一种可用于开发CPVT治疗方法的方法。它将促进我们对
用于研究由RyR 2功能障碍引起的其他疾病和用于研究其他离子的新技术
渠道
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREW Robert MARKS其他文献
ANDREW Robert MARKS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREW Robert MARKS', 18)}}的其他基金
Ryanodine receptor structure and function in heart failure
Ryanodine 受体结构和心力衰竭中的功能
- 批准号:
10628917 - 财政年份:2023
- 资助金额:
$ 76.28万 - 项目类别:
Summer Program for Under Represented Students (SPURS)
弱势学生暑期项目 (SPURS)
- 批准号:
10583050 - 财政年份:2022
- 资助金额:
$ 76.28万 - 项目类别:
Training in Cardiovascular Sciences for Under Represented Students
为代表性不足的学生提供心血管科学培训
- 批准号:
10669557 - 财政年份:2021
- 资助金额:
$ 76.28万 - 项目类别:
Training in Cardiovascular Sciences for Under Represented Students
为代表性不足的学生提供心血管科学培训
- 批准号:
10115469 - 财政年份:2021
- 资助金额:
$ 76.28万 - 项目类别:
Training in Cardiovascular Sciences for Under Represented Students
为代表性不足的学生提供心血管科学培训
- 批准号:
10397516 - 财政年份:2021
- 资助金额:
$ 76.28万 - 项目类别:
Calcium and the Pathophysiology of Neurodegenerative Disorders
钙与神经退行性疾病的病理生理学
- 批准号:
10052965 - 财政年份:2020
- 资助金额:
$ 76.28万 - 项目类别:
Ryanodine Receptor Defects in Cardiomyopathy Caused by Lamin A/C Gene Mutations
Lamin A/C 基因突变引起的心肌病中的 Ryanodine 受体缺陷
- 批准号:
9904328 - 财政年份:2019
- 资助金额:
$ 76.28万 - 项目类别:
Ryanodine Receptor Defects in Cardiomyopathy Caused by Lamin A/C Gene Mutations
Lamin A/C 基因突变引起的心肌病中的 Ryanodine 受体缺陷
- 批准号:
10376824 - 财政年份:2019
- 资助金额:
$ 76.28万 - 项目类别:
相似海外基金
Elucidation of the effects of CYP1A2 and gut microbiota on acute caffeine intoxication
阐明 CYP1A2 和肠道微生物群对急性咖啡因中毒的影响
- 批准号:
23K09775 - 财政年份:2023
- 资助金额:
$ 76.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Caffeine and Postoperative Neurocognitive Recovery
咖啡因与术后神经认知恢复
- 批准号:
10517443 - 财政年份:2022
- 资助金额:
$ 76.28万 - 项目类别:
Caffeine and Postoperative Neurocognitive Recovery
咖啡因与术后神经认知恢复
- 批准号:
10674966 - 财政年份:2022
- 资助金额:
$ 76.28万 - 项目类别:
SBIR Phase I: Microbial production of paraxanthine, a caffeine replacement
SBIR 第一阶段:微生物生产副黄嘌呤(一种咖啡因替代品)
- 批准号:
2039060 - 财政年份:2021
- 资助金额:
$ 76.28万 - 项目类别:
Standard Grant
Molecular mechanisms of immune activation and therapeutic effect on infectious diseases by caffeine
咖啡因激活免疫的分子机制及对感染性疾病的治疗作用
- 批准号:
21K11669 - 财政年份:2021
- 资助金额:
$ 76.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of appropriate dose of caffeine using TDM in extremely preterm infants
使用 TDM 确定极早产儿的适当咖啡因剂量
- 批准号:
20K16877 - 财政年份:2020
- 资助金额:
$ 76.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Impact of caffeine released into the rhizosphere on aluminum tolerance in plants.
释放到根际的咖啡因对植物铝耐受性的影响。
- 批准号:
20K05764 - 财政年份:2020
- 资助金额:
$ 76.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
STTR Phase I: Active Transport of Caffeine through a Blood-Brain Barrier Model
STTR 第一阶段:通过血脑屏障模型主动转运咖啡因
- 批准号:
2014346 - 财政年份:2020
- 资助金额:
$ 76.28万 - 项目类别:
Standard Grant
Photoaffinity labelling of alpha-synuclein using diazirine labelled caffeine, nicotine and 1-aminoindan.
使用二氮丙啶标记的咖啡因、尼古丁和 1-氨基茚满对 α-突触核蛋白进行光亲和标记。
- 批准号:
542683-2019 - 财政年份:2019
- 资助金额:
$ 76.28万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
From caffeine to salt: influences on the A2A adenosine receptor
从咖啡因到盐:对 A2A 腺苷受体的影响
- 批准号:
543012-2019 - 财政年份:2019
- 资助金额:
$ 76.28万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's