Medical Device Design and Innovation; Orthopaedic Implant Failure Analysis and Redesign

医疗器械设计与创新;

基本信息

  • 批准号:
    10409163
  • 负责人:
  • 金额:
    $ 4.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY The proposed team-based Medical Device Design and Innovation course will prepare undergraduate junior and senior biomedical engineering students with a robust toolkit to be innovators of medical technologies with the skills necessary to design devices that reduce medical errors and device failure hazards. A summer clinical immersion, with a focus on identifying potential sources of preventable complications from medical device adverse events and failures, will provide the students a widened perspective regarding the safe delivery of healthcare. In addition, training during the semester long course in analyses of common causes of medical device failure will provide the students the skills to develop devices responsibly. The program will start in the summer with a clinical immersion for up to 10 students rotating through an 8-week long rotation with Yale physicians and surgeons from 6 different specialties. Students will work with their physician mentors to identify causes of preventable medical/surgical errors, device user-related hazards and device failure hazards, with the goal of addressing these preventable complications with medical device design projects. In addition, students will participate in didactics with a structured summer curriculum focusing on needs identification, assessment and risk management. In the Fall, the 10 summer students will continue their clinical immersions by shadowing 1 day a week, and participate in a campus wide “device design speaker series”. Within the Spring semester course, each summer Fellowship student will form the nucleus of a design team of 3-5 members. Based on needs / problems / preventable medical errors identified within the summer and fall clinical immersion, the students, following the biodesign innovation process, will design a functioning prototype and commercialization plan. Concurrently, throughout the Spring semester, students will work on a separate failure analysis project to learn how to pinpoint and simulate potential critical medical device failure mechanisms. Didactic lectures will include topics such as the device design process, regulatory affairs, human factors engineering, responsible conduct of research, and off-campus trips to medical device R&D facilities. At the end of the course, open access content will be published as a free online curriculum, and students will submit papers to PubMed indexed journals. The innovation of this application is to embed engineering students within a clinical environment, exposing them to potential sources of preventable medical complications and device failures, as well as teaching them how to identify, simulate and model critical failure mechanisms. This course, which seeks to attract underrepresented minorities, will result in an improved pipeline of future scientists whose practical experience in a clinical environment will facilitate their entry into biomedical engineering careers. The course will utilize the engineering, innovation and medical research resources at Yale University. The University biomedical engineering ecosystem will also benefit from collaboration between engineering faculty and clinicians.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven M Tommasini其他文献

Steven M Tommasini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven M Tommasini', 18)}}的其他基金

Medical Device Design and Innovation; Orthopaedic Implant Failure Analysis and Redesign
医疗器械设计与创新;
  • 批准号:
    10614004
  • 财政年份:
    2022
  • 资助金额:
    $ 4.16万
  • 项目类别:

相似海外基金

Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10707830
  • 财政年份:
    2023
  • 资助金额:
    $ 4.16万
  • 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
  • 批准号:
    479728
  • 财政年份:
    2023
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
  • 批准号:
    10884567
  • 财政年份:
    2023
  • 资助金额:
    $ 4.16万
  • 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
  • 批准号:
    10751964
  • 财政年份:
    2023
  • 资助金额:
    $ 4.16万
  • 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
  • 批准号:
    486321
  • 财政年份:
    2022
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10676786
  • 财政年份:
    2022
  • 资助金额:
    $ 4.16万
  • 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10440970
  • 财政年份:
    2022
  • 资助金额:
    $ 4.16万
  • 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
  • 批准号:
    10642998
  • 财政年份:
    2022
  • 资助金额:
    $ 4.16万
  • 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10482465
  • 财政年份:
    2022
  • 资助金额:
    $ 4.16万
  • 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
  • 批准号:
    10191053
  • 财政年份:
    2020
  • 资助金额:
    $ 4.16万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了