An Autonomous, Non-invasive, and Bioanalytics-enabled Wearable Platform for Precision Nutrition and Personalized Medicine
用于精准营养和个性化医疗的自主、非侵入性且支持生物分析的可穿戴平台
基本信息
- 批准号:10408784
- 负责人:
- 金额:$ 19.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-24 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAlgorithmsBiological MarkersBloodClinicalClinical EngineeringClinical ResearchComplexCystic FibrosisData AnalyticsData SetDevelopmentDevicesDietary InterventionDiseaseDisease ManagementEngineeringGeneral PopulationGlucoseHealthHourIn SituIndividualInfluentialsInheritedIntakeIontophoresisMachine LearningMeasuresMetabolic DiseasesMethodologyMicrofluidicsMissionModalityModelingMonitorNutrientNutritional SupportNutritional statusPeriodicityPersonal SatisfactionPhasePhysiologicalPhysiologyPositioning AttributeRandomizedReadingSamplingSodium ChlorideStudy SubjectSweat GlandsSweat testSystemTechnologyTriglyceridesValidationWorkbasebeta-Hydroxybutyratecofactorcohortcystic fibrosis patientsdietary supplementseffective therapyexperimental studyhuman subjectmachine learning algorithmmicrosensormultidisciplinaryoperationpersonalized medicineprecision nutritionpredictive modelingrecruitremote patient monitoringresponsesensorsuccesstargeted biomarkertranslational applicationswearable devicewearable platform
项目摘要
Project Summary
This proposal aims to enable precision nutrition by creating a wearable technology that can be scaled across
the general population to non-invasively track the diurnal profiles of a panel of putative circulating nutrients and
biomarkers. Accordingly, we will address fundamental and intermeshed engineering bottlenecks and scientific
questions at sensor, device, and data analytics levels to realize a sweat-based wearable bioanalytical
technology, equipped with autonomous sweat secretion modulation, biofluid management, and analysis
capabilities. To illustrate our technology’s transformative potential, we will particularly position it to monitor a
panel of nutrients and indicators of the metabolic and disease state that are relevant in cystic fibrosis (CF, the
most common inherited multisystemic disorder), in order to enable individualized nutritional support, which is
central to the CF treatment.
Accordingly, in the first phase (R21), we will develop microsensor arrays targeting glucose, triglyceride, and β-
hydroxybutyrate. We will incorporate our readily developed auxiliary sensing modalities (sweat sodium, chloride,
pH, and sweat secretion rate sensing interfaces) to enable the in-situ characterization of the secretion profile
(which is useful for the normalization of sweat readings and tracking of the CF progression). In parallel to these
engineering efforts, we will conduct sweat characterization experiments to study the effect of the secretion rate
on analyte partitioning from blood into sweat. These datasets will be augmented with state-of-art machine
learning algorithms to formulate a dedicated analytical framework that accounts for sweat secretion variabilities
and determines optimal sweat secretion condition(s) to provide undistorted and physiologically meaningful sweat
readings.
In the second phase (R33), we will establish the clinical utility of our technology by demonstrating the ability to
non-invasively track the target nutrients’ temporal profiles in relation to their circulating levels in blood (in both
healthy subjects and CF patients and through simple/mixed meal-modulated studies). Accordingly, we will first
measure the sweat and blood analytes’ excursion profiles after controlled single/binary combinations of nutrients
intake and develop a machine-learning based algorithm to correlate the sweat analyte readouts to their
circulating concentrations. Then we will assess and characterize the predictive utility of our solution in the context
of complex nutritional supplement studies. Upon its validation, we will recruit a cohort of CF patients and perform
a longitudinal randomized nutritional support study to demonstrate the enabling remote patient monitoring
capabilities rendered by our solution.
The success of this work will represent a groundbreaking contribution towards the development of strategies
to enable precision nutrition and personalized medicine.
项目摘要
这项提议旨在通过创造一种可穿戴的可扩展技术来实现精准营养
非侵入性地跟踪一组假定的循环营养物质和
生物标志物。因此,我们将解决根本和相互交织的工程瓶颈和科学
传感器、设备和数据分析层面的问题,以实现基于汗液的可穿戴生物分析
技术,配备自主汗液分泌调节、生物流体管理和分析
能力。为了说明我们的技术的变革潜力,我们将特别将其定位为监控
与囊性纤维化(CF)相关的营养物质以及代谢和疾病状态指标
最常见的遗传性多系统障碍),以实现个性化的营养支持,这是
是CF治疗的核心。
因此,在第一阶段(R21),我们将开发针对葡萄糖、甘油三酯和β的微传感器阵列-
羟基丁酸酯。我们将整合我们易于开发的辅助传感模式(汗液钠、氯化物、
PH和汗液分泌率感测接口)以实现分泌物分布的原位表征
(这对于汗液读数的标准化和CF进展的跟踪很有用)。与此平行的是
在工程的努力下,我们将进行汗液特性实验,研究汗液分泌速度的影响。
关于分析物从血液到汗液的分配。这些数据集将使用最先进的计算机进行扩充
学习算法以制定一个专门的分析框架来解释汗液分泌的变异性
并确定最佳汗液分泌条件(S),以提供无扭曲和有生理意义的汗液
读数。
在第二阶段(R33),我们将通过展示以下能力来确定我们的技术的临床实用性
非侵入性地跟踪目标营养素相对于其在血液中的循环水平的时间分布(在两种情况下
健康受试者和慢性纤维性心脏病患者以及通过简单/混合膳食调节研究)。因此,我们将首先
在控制单一/二元营养组合后,测量汗液和血液分析物的漂移曲线
吸纳并开发基于机器学习的算法来将汗液分析物读数与其
循环浓度。然后,我们将评估和表征我们的解决方案在此背景下的预测性效用
复杂的营养补充剂研究。在其验证后,我们将招募一组CF患者并执行
一项纵向随机营养支持研究,以证明启用远程患者监控
我们的解决方案提供的功能。
这项工作的成功将对制定战略作出开创性的贡献。
使精准营养和个性化医疗成为可能。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Autonomous wearable sweat rate monitoring based on digitized microbubble detection.
基于数字化微泡检测的自主可穿戴出汗率监测。
- DOI:10.1039/d2lc00670g
- 发表时间:2022-11-08
- 期刊:
- 影响因子:6.1
- 作者:Lin, Haison G.;Yu, Wenzhuo;De Dios Suarez, Jorge Emiliano;Athavan, Harish;Wang, Yibo;Yeung, Christopher;Lin, Shuyu;Sankararaman, Sriram;Milla, Carlos;Emaminejad, Sam
- 通讯作者:Emaminejad, Sam
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAM EMAMINEJAD其他文献
SAM EMAMINEJAD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAM EMAMINEJAD', 18)}}的其他基金
An Autonomous, Non-invasive, and Bioanalytics-enabled Wearable Platform for Precision Nutrition and Personalized Medicine
用于精准营养和个性化医疗的自主、非侵入性且支持生物分析的可穿戴平台
- 批准号:
10198604 - 财政年份:2021
- 资助金额:
$ 19.59万 - 项目类别:
An Autonomous, Non-invasive, and Bioanalytics-enabled Wearable Platform for Precision Nutrition and Personalized Medicine
用于精准营养和个性化医疗的自主、非侵入性且支持生物分析的可穿戴平台
- 批准号:
10888746 - 财政年份:2021
- 资助金额:
$ 19.59万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 19.59万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 19.59万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 19.59万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 19.59万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 19.59万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 19.59万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 19.59万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 19.59万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 19.59万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 19.59万 - 项目类别:
Research Grant














{{item.name}}会员




