MARC at the University of Florida
佛罗里达大学 MARC
基本信息
- 批准号:10411337
- 负责人:
- 金额:$ 16.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressArtificial IntelligenceAuthorshipBachelor&aposs DegreeBehavioral ResearchBiomedical ResearchCCL7 geneCourse ContentData ScienceDegree programDevelopmentDoctor of PhilosophyEducational workshopEngineeringEnvironmentEthnic groupExtramural ActivitiesFloridaFundingGeriatric PsychiatryGoalsGraduation RatesGroup ProcessesMachine LearningMeasurableMental HealthMentorsMentorshipMonitorMotivationOutcomePerformancePreparationPublicationsResearchResourcesStudentsTrainingUnited States National Institutes of HealthUniversitiesWell in selfcohortdesigndisabled studentsexperiencefaculty mentorfaculty researchgraduate studentimprovedinnovationmatriculationnovelprogramsracial and ethnicrecruitskill acquisitionundergraduate student
项目摘要
PROJECT SUMMARY/ABSTRACT
The proposed project addresses the problem of low diversity in biomedical and behavioral
research by continuing and improving the University of Florida (UF) MARC program. The
program will recruit 30 undergraduate trainees from underrepresented (UR) backgrounds and
place them with NIH-funded faculty mentors for up to three years of continuous research
mentorship within an integrated training environment. The overall program is designed to
increase each trainee's technical, operational, and professional development skills for
biomedical and behavioral research, promote each trainee's academic performance, and
enhance each trainee's mental health and wellness, with the goal of increasing motivation and
preparation for transitioning to a competitive PhD program. The program recruited its first
trainee cohort in 2017 and appointed 17 trainees through 2020 (four more have been selected
for 2021). All 12 trainees who have since graduated were accepted to competitive PhD
programs (10) or directly entered the biomedical workforce (2). The program includes 15
undergraduate degree programs at UF in which ca. 3,300 students (30%) are from
underrepresented racial/ethnic groups and ca. 1,000 (9%) are students with disabilities. The
proposed MARC program has six measurable performance targets: 1) recruit 30 trainees (10 as
rising sophomores and 20 as rising juniors), 2) at least 93% trainee retention, 3) 100%
participation in an extramural research experience, 4) at least 93% 4-year graduation rate (5-yr
for engineering majors), 5) at least 75% authorship on a research publication, and 6) at least
90% matriculation to a PhD or MD/PhD program within two years. The training plan includes
continuous participation in research mentored by a faculty research mentor and an integrated
curriculum of courses and activities. The proposed program includes three novel, innovative
projects: development of two Data Science and Research Computing courses that provide
training in biomedical applications of artificial intelligence and machine learning, biweekly
trainee participation Mental Health & Wellness Process Groups led by senior psychiatry
residents, and development of workshops to train graduate students and postdoctoral students
in mentoring undergraduates in research environments. Resources from these novel projects
will be open and exportable. Program outcomes will be continuously monitored, and
adjustments made whenever indicated.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID JULIAN其他文献
DAVID JULIAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID JULIAN', 18)}}的其他基金
GatorSTAR: A New MARC U*STAR Program at the University of Florida
GatorSTAR:佛罗里达大学新的 MARC U*STAR 项目
- 批准号:
9926716 - 财政年份:2016
- 资助金额:
$ 16.19万 - 项目类别:
GatorSTAR: A New MARC U*STAR Program at the University of Florida
GatorSTAR:佛罗里达大学新的 MARC U*STAR 项目
- 批准号:
10163865 - 财政年份:2016
- 资助金额:
$ 16.19万 - 项目类别:
GatorSTAR: A New MARC U*STAR Program at the University of Florida
GatorSTAR:佛罗里达大学新的 MARC U*STAR 项目
- 批准号:
10405962 - 财政年份:2016
- 资助金额:
$ 16.19万 - 项目类别:
GatorSTAR: A New MARC U*STAR Program at the University of Florida
GatorSTAR:佛罗里达大学新的 MARC U*STAR 项目
- 批准号:
9073729 - 财政年份:2016
- 资助金额:
$ 16.19万 - 项目类别:
SF2UF: A new Bridges Baccalaureate program between Santa Fe College and the University of Florida.
SF2UF:圣达菲学院和佛罗里达大学之间的新桥梁学士学位课程。
- 批准号:
9753258 - 财政年份:2015
- 资助金额:
$ 16.19万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 16.19万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 16.19万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 16.19万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 16.19万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 16.19万 - 项目类别:
Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 16.19万 - 项目类别:
Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 16.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 16.19万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 16.19万 - 项目类别:
EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 16.19万 - 项目类别:
Fellowship














{{item.name}}会员




