Deep Learning-Enabled Arterial Pulse Waveform Analysis Approach to Peripheral Artery Disease Diagnosis

基于深度学习的动脉脉搏波形分析方法用于外周动脉疾病诊断

基本信息

  • 批准号:
    10411311
  • 负责人:
  • 金额:
    $ 7.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Peripheral artery disease (PAD) is a highly prevalent vascular disease entailing high morbidity and mortality risks. But, PAD is underdiagnosed with low primary care awareness. Conventional PAD diagnosis in clinical settings is not suited to low-cost, high-throughput, and accurate PAD diagnosis. Noting that PAD alters arterial pulse waveforms, the analysis of arterial pulse waveforms (called the pulse waveform analysis (PWA)) has the potential for advancing the accuracy and convenience of PAD diagnosis. In particular, PWA can outperform techniques built upon discrete features in the arterial pulse waveforms (e.g., ABI) by exploiting the arterial pulse waveforms in their entirety. In addition, PWA can be realized with arterial pulse waveforms conveniently measured at the extremity sites (e.g., arm and ankle, which are already being employed in ABI). Yet, PWA involves trial-and-error-based empirical feature selection. Hence, PWA may be combined with modern deep learning (DL) techniques to leverage the ability of DL to automatically select task-relevant features. Successful training of a DL algorithm for PAD diagnosis requires massive labeled datasets associated with longitudinal PAD progression collected from diverse PAD patients. However, only scarce (and possibly non-longitudinal) datasets from a small number of patients may be available in reality. Now that arterial pulse waveform is affected not only by PAD but also by the anatomical and arterial biomechanical characteristics of the patient, insufficiency in datasets can deteriorate the robustness of the DL algorithm against disturbances due to a wide range of anatomical and arterial biomechanical characteristics encountered in real-world PAD patients obscuring the signatures of PAD in the arterial pulse waveforms. To address these obstacles, we propose to realize a DL-enabled arterial PWA approach to PAD diagnosis by developing a novel computational method for robust training of DL algorithms with scarce datasets. Our basic idea is to extend the conventional domain-adversarial learning to guide DL training so as to foster the exploitation of latent features independent of continuous anatomical and arterial biomechanical disturbances in diagnosing PAD. Specific aims include: (i) to develop a continuous domain-adversarial regularization (CDAR) method for robust DL algorithm training with scarce datasets; and (ii) to demonstrate the potential of the DL-enabled arterial PWA developed with the aid of CDAR for detecting, localizing, and assessing the severity of PAD robustly against disturbances associated with patient height and arterial stiffness in a resource-efficient in silico study. We will also estimate the amount of datasets required to enable accurate and robust PAD diagnosis to inform our follow-up in vivo study. If successful, the CDAR method and the DL-enabled PWA may be broadly applicable to the diagnosis of a range of cardiovascular diseases. The success of this project will provide us with a strong justification for resource- intensive in vivo assessment of the DL-enabled PWA approach to PAD diagnosis using datasets collected from real PAD patients based on the sample size informed by the results of this project.
项目摘要/摘要 摘要外周动脉疾病是一种发病率高、病死率高的血管疾病。 风险。但是,PAD被低估了,初级保健意识低。临床常规PAD诊断方法的探讨 设置不适合低成本、高吞吐量和准确的PAD诊断。注意到PAD改变了动脉 脉搏波,动脉脉搏波的分析(称为脉搏波分析(PWA))具有 有可能提高PAD诊断的准确性和便利性。特别是,PWA可以表现得更好 通过利用动脉的脉搏波形(例如ABI)中的离散特征构建的技术 完整的脉搏波形。另外,利用动脉脉搏波可以方便地实现脉搏波变换 在四肢部位(例如,已经在ABI使用的手臂和脚踝)进行测量。然而,PWA 涉及基于试错法的经验特征选择。因此,PWA可能会与现代深度相结合 学习(DL)技术,利用DL自动选择与任务相关的功能的能力。 成功训练用于PAD诊断的DL算法需要关联大量的标记数据集 从不同的PAD患者收集的纵向PAD进展。然而,只有稀有的(可能是 非纵向的)来自少量患者的数据集实际上可能是可用的。现在那个动脉脉搏 波形不仅受到PAD的影响,而且还受到PAD的解剖和动脉生物力学特性的影响 患者、数据集的不足会降低DL算法对干扰的健壮性 由于在真实的PAD中遇到了广泛的解剖和动脉生物力学特性 患者在动脉脉搏波中模糊了PAD的特征。为了解决这些障碍,我们 提出通过开发一种新的计算方法来实现使能DL的动脉PWA方法来诊断PAD 稀缺数据集下数据挖掘算法的稳健训练方法。我们的基本想法是将传统的 以领域对抗性学习指导数字图书馆的训练,促进潜在特征的独立开发 持续的解剖学和动脉生物力学障碍在诊断PAD中的作用。具体目标包括:(I) 提出了一种连续域对抗正则化(CDAR)方法,用于稳健的DL算法训练 稀缺的数据集;以及(Ii)展示在以下方面开发的具有DL功能的动脉PWA的潜力 CDAR用于检测、定位和评估PAD针对相关干扰的严重程度 与患者身高和动脉僵硬的关系,这是一项资源高效的计算机研究。我们还会估算出 需要的数据集,以实现准确和强大的PAD诊断,为我们的后续活体研究提供信息。如果 成功的CDAR方法和支持DL的PWA可能广泛适用于范围的诊断 心血管疾病。这个项目的成功将为我们提供一个强有力的理由-- 使用从以下项目收集的数据集对启用DL的PWA方法进行密集的体内评估以进行PAD诊断 真实的PAD患者根据样本量通知本项目的结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jin-Oh Hahn其他文献

Jin-Oh Hahn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jin-Oh Hahn', 18)}}的其他基金

Learning-Enabled Autonomous Decision-Support for Blood Pressure Management in Hemorrhage Resuscitation via Population-Informed Statistical Inference
通过基于人群的统计推断,为出血复苏中的血压管理提供学习型自主决策支持
  • 批准号:
    10727737
  • 财政年份:
    2023
  • 资助金额:
    $ 7.25万
  • 项目类别:

相似海外基金

Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
  • 批准号:
    495182
  • 财政年份:
    2023
  • 资助金额:
    $ 7.25万
  • 项目类别:
Parkinson's disease and aging affect neural activation during continuous gait alterations to the split-belt treadmill: An [18F] FDG PET Study.
帕金森病和衰老会影响分体带跑步机连续步态改变期间的神经激活:[18F] FDG PET 研究。
  • 批准号:
    400097
  • 财政年份:
    2019
  • 资助金额:
    $ 7.25万
  • 项目类别:
The elucidation of the mechanism by which intestinal epithelial cells affect impaired glucose tolerance during aging
阐明衰老过程中肠上皮细胞影响糖耐量受损的机制
  • 批准号:
    19K09017
  • 财政年份:
    2019
  • 资助金额:
    $ 7.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Does aging of osteocytes adversely affect bone metabolism?
骨细胞老化会对骨代谢产生不利影响吗?
  • 批准号:
    18K09531
  • 财政年份:
    2018
  • 资助金额:
    $ 7.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Links between affect, executive function, and prefrontal structure in aging: A longitudinal analysis
衰老过程中情感、执行功能和前额叶结构之间的联系:纵向分析
  • 批准号:
    9766994
  • 财政年份:
    2018
  • 资助金额:
    $ 7.25万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9320090
  • 财政年份:
    2017
  • 资助金额:
    $ 7.25万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    10166936
  • 财政年份:
    2017
  • 资助金额:
    $ 7.25万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9761593
  • 财政年份:
    2017
  • 资助金额:
    $ 7.25万
  • 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
  • 批准号:
    9925164
  • 财政年份:
    2016
  • 资助金额:
    $ 7.25万
  • 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
  • 批准号:
    9345997
  • 财政年份:
    2016
  • 资助金额:
    $ 7.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了