Combining Voice and Genetic Information to Detect Heterogeneity in Major Depressive Disorder
结合声音和遗传信息来检测重度抑郁症的异质性
基本信息
- 批准号:10410474
- 负责人:
- 金额:$ 66.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-14 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAllelesAnxietyBehavioral GeneticsBiological MarkersBiologyCase-Control StudiesChinaChineseClassificationClinicalClinical ManagementCollectionDataData SetDepressed moodDevelopmentDiagnosisDiseaseDisease remissionDrug PrescriptionsEngineeringEnsureFar EastFrequenciesGeneticGenetic studyGenomicsGenotypeHeritabilityHeterogeneityInterviewInvestigationLinkage DisequilibriumMajor Depressive DisorderManualsMapsMental DepressionMental HealthMental disordersMethodologyMethodsModelingMoodsMorphologic artifactsNeurobiologyParticipantPatientsPatternPersonsPharmacological TreatmentPhenotypePopulationPsychiatryRecurrenceRefractoryResearchResourcesSamplingSchemeSeveritiesSeverity of illnessSignal TransductionSpecificitySpeechSuicideSystemTestingTimeUrsidae FamilyVoiceVoice QualityWomanaccurate diagnosisbasebiobankclinical applicationclinical phenotypecomorbiditycomputer sciencedata sharingdeep neural networkdisabilitydisorder subtypeeffective therapyefficacy evaluationflexibilitygenetic analysisgenetic architecturegenetic informationgenetic predictorsimprovedinnovationinsightlong short term memorymultidimensional dataneuroimagingpreservationpsychogeneticspublic health prioritiesstatisticstargeted treatmenttraittransfer learningtreatment responsevector
项目摘要
PROJECT SUMMARY
This application aims to advance our understanding of major depressive disorder (MDD) by combining genetic
information and analyzing speech patterns of those with MDD to identify subtypes. MDD is the leading cause
of disability throughout the world, yet, relative to other common disorders, less is known about its origins.
There are less effective treatments and much less is spent on trying to understand how it arises and how to
cure it. Current treatments are relatively ineffective, with up 50% of patients refractory and many suffering
severe recurrence. Understanding the mechanisms underlying MDD has been recognized as a grand
challenge in global mental health. Thus, developing new treatments for MDD is a major priority for public health.
A major challenge for MDD research is the presence of heterogeneity. The existence of multiple subtypes of
MDD has been suspected for a long time, and likely confounds the ability to treat the disorder appropriately
with existing treatments, as well as making it hard to identify the causes of MDD as a prelude to developing
new treatments. However finding subtypes has been hard. Given that the way people talk can reflect
alterations in mood, we expect voice to be able to predict mood, and hence potentially be used as biomarker to
recognize heterogeneity. In preliminary data show that in combination with genetic data high-dimensional vocal
features extracted from recordings can be used to identify subtypes. Furthermore, the use of genetic data
allows us to impute voice features into large biobanks where no recordings exist, making it possible to explore
the relationship between vocal features and a rich array of clinically important indicators. We explore the power
of voice to make a diagnosis of MDD, to predict severity and other clinical features. Applying our approach to
will inform clinical management, improving diagnosis, refine treatment and aid the development of new
treatments
项目摘要
本申请旨在通过结合遗传学和基因治疗来促进我们对重度抑郁症(MDD)的理解。
信息和分析MDD患者的语音模式以识别亚型。MDD是导致
尽管残疾在全世界是一个普遍现象,但相对于其他常见疾病,对其起源的了解较少。
有不太有效的治疗方法,更少的是花在试图了解它是如何产生和如何
目前的治疗方法相对无效,50%的患者难以治愈,许多人遭受痛苦。
严重复发。理解MDD的底层机制已经被认为是一个重要的
全球心理健康的挑战。因此,开发MDD的新治疗方法是公共卫生的主要优先事项。
MDD研究的一个主要挑战是异质性的存在。多种亚型的存在
MDD已被怀疑了很长一段时间,并可能混淆了适当治疗这种疾病的能力
与现有的治疗方法,以及使其难以确定MDD的原因作为发展的前奏,
新疗法然而,发现亚型一直很难。鉴于人们说话的方式可以反映出
情绪的变化,我们希望声音能够预测情绪,因此有可能被用作生物标志物,
承认异质性。在初步的数据显示,结合遗传数据高维声乐
从记录中提取的特征可用于识别亚型。此外,基因数据的使用
允许我们将声音特征输入到没有记录的大型生物库中,
声音特征和一系列临床重要指标之间的关系。我们探索
诊断MDD,预测严重程度和其他临床特征。将我们的方法应用于
将告知临床管理,改善诊断,完善治疗,并帮助开发新的
治疗
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JONATHAN FLINT其他文献
JONATHAN FLINT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JONATHAN FLINT', 18)}}的其他基金
Improving the interpretability of genetic studies of major depressive disorder to identify risk genes
提高重度抑郁症基因研究的可解释性以识别风险基因
- 批准号:
10504696 - 财政年份:2022
- 资助金额:
$ 66.78万 - 项目类别:
Improving the interpretability of genetic studies of major depressive disorder to identify risk genes
提高重度抑郁症基因研究的可解释性以识别风险基因
- 批准号:
10646326 - 财政年份:2022
- 资助金额:
$ 66.78万 - 项目类别:
Combining Voice and Genetic Information to Detect Heterogeneity in Major Depressive Disorder
结合声音和遗传信息来检测重度抑郁症的异质性
- 批准号:
10656229 - 财政年份:2020
- 资助金额:
$ 66.78万 - 项目类别:
Combining Voice and Genetic Information to Detect Heterogeneity in Major Depressive Disorder
结合声音和遗传信息来检测重度抑郁症的异质性
- 批准号:
10238767 - 财政年份:2020
- 资助金额:
$ 66.78万 - 项目类别:
Developing a Pathway from Genetic Locus to Gene for Complex Traits in Rodents
开发从遗传位点到啮齿动物复杂性状基因的途径
- 批准号:
10361239 - 财政年份:2018
- 资助金额:
$ 66.78万 - 项目类别:
Developing a Pathway from Genetic Locus to Gene for Complex Traits in Rodents
开发从遗传位点到啮齿动物复杂性状基因的途径
- 批准号:
10197749 - 财政年份:2018
- 资助金额:
$ 66.78万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 66.78万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 66.78万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 66.78万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 66.78万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 66.78万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 66.78万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 66.78万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 66.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 66.78万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 66.78万 - 项目类别: